Electroweak gauge boson parton distribution functions

  • Bartosz Fornal
  • Aneesh V. Manohar
  • Wouter J. Waalewijn
Open Access
Regular Article - Theoretical Physics


Transverse and longitudinal electroweak gauge boson parton distribution functions (PDFs) are computed in terms of deep-inelastic scattering structure functions, following the recently developed method to determine the photon PDF. The calculation provides initial conditions at the electroweak scale for PDF evolution to higher energies. Numerical results for the W ± and Z transverse, longitudinal and polarized PDFs, as well as the γZ transverse and polarized PDFs are presented.


Deep Inelastic Scattering (Phenomenology) QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M.L. Mangano et al., Physics at a 100 TeV pp Collider: Standard Model Processes, CERN Yellow Report (2017) 1 [arXiv:1607.01831] [INSPIRE].
  2. [2]
    M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [INSPIRE].
  3. [3]
    M. Ciafaloni, P. Ciafaloni and D. Comelli, Electroweak Bloch-Nordsieck violation at the TeV scale: ‘Strong’ weak interactions?, Nucl. Phys. B 589 (2000) 359 [hep-ph/0004071] [INSPIRE].
  4. [4]
    C.W. Bauer, N. Ferland and B.R. Webber, Combining initial-state resummation with fixed-order calculations of electroweak corrections, JHEP 04 (2018) 125 [arXiv:1712.07147] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C.W. Bauer, N. Ferland and B.R. Webber, Standard Model Parton Distributions at Very High Energies, JHEP 08 (2017) 036 [arXiv:1703.08562] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.V. Manohar and W.J. Waalewijn, Electroweak Logarithms in Inclusive Cross Sections, arXiv:1802.08687 [INSPIRE].
  7. [7]
    A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.V. Manohar, P. Nason, G.P. Salam and G. Zanderighi, The Photon Content of the Proton, JHEP 12 (2017) 046 [arXiv:1708.01256] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M.S. Chanowitz and M.K. Gaillard, Multiple Production of W and Z as a Signal of New Strong Interactions, Phys. Lett. B 142 (1984) 85 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Dawson, The Effective W Approximation, Nucl. Phys. B 249 (1985) 42 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G.L. Kane, W.W. Repko and W.B. Rolnick, The Effective W ± , Z 0 Approximation for High-Energy Collisions, Phys. Lett. B 148 (1984) 367 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].ADSGoogle Scholar
  13. [13]
    R.L. Jaffe, Parton Distribution Functions for Twist Four, Nucl. Phys. B 229 (1983) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A.V. Manohar, Parton distributions from an operator viewpoint, Phys. Rev. Lett. 65 (1990) 2511 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.V. Manohar, Polarized parton distribution functions, Phys. Rev. Lett. 66 (1991) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  17. [17]
    M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Bohm, A. Denner and H. Joos, Gauge theories of the strong and electroweak interaction, Teubner, Stuttgart, Germany (2001) [INSPIRE].
  19. [19]
    J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Soft and Collinear Functions for the Standard Model, Phys. Rev. D 81 (2010) 014023 [arXiv:0909.0947] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M.B. Voloshin and V.I. Zakharov, Measuring QCD Anomalies in Hadronic Transitions Between Onium States, Phys. Rev. Lett. 45 (1980) 688 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R.S. Chivukula, A.G. Cohen, H. Georgi, B. Grinstein and A.V. Manohar, Higgs Decay Into Goldstone Bosons, Annals Phys. 192 (1989) 93 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Fermi, On the Theory of the impact between atoms and electrically charged particles, Z. Phys. 29 (1924) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C.F. von Weizsacker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88 (1934) 612 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    E.J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45 (1934) 729 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    NNPDF collaboration, V. Bertone et al., Illuminating the photon content of the proton within a global PDF analysis, arXiv:1712.07053 [INSPIRE].
  27. [27]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D.B. Clark, E. Godat and F.I. Olness, ManeParse: A Mathematica reader for Parton Distribution Functions, Comput. Phys. Commun. 216 (2017) 126 [arXiv:1605.08012] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of California, San DiegoLa JollaU.S.A.
  2. 2.Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Nikhef, Theory GroupAmsterdamThe Netherlands

Personalised recommendations