Advertisement

An analytic superfield formalism for tree superamplitudes in D=10 and D=11

  • Igor Bandos
Open Access
Regular Article - Theoretical Physics
  • 49 Downloads

Abstract

Tree amplitudes of 10D supersymmetric Yang-Mills theory (SYM) and 11D supergravity (SUGRA) are collected in multi-particle counterparts of analytic on-shell superfields. These have essentially the same form as their chiral 4D counterparts describing \( \mathcal{N}=4 \) SYM and \( \mathcal{N}=8 \) SUGRA, but with components dependent on a different set of bosonic variables. These are the D=10 and D=11 spinor helicity variables, the set of which includes the spinor frame variable (Lorentz harmonics) and a scalar density, and generalized homogeneous coordinates of the coset \( \frac{\mathrm{SO}\left(D-2\right)}{\mathrm{SO}\left(D-4\right)\otimes \mathrm{U}(1)} \) (internal harmonics).

We present an especially convenient parametrization of the spinor harmonics (Lorentz covariant gauge fixed with the use of an auxiliary gauge symmetry) and use this to find (a gauge fixed version of) the 3-point tree superamplitudes of 10D SYM and 11D SUGRA which generalize the 4 dimensional anti-MHV superamplitudes.

Keywords

Field Theories in Higher Dimensions Scattering Amplitudes Supergravity Models Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Amplitudes and Ultraviolet Behavior of N = 8 Supergravity, Fortsch. Phys. 59 (2011) 561 [arXiv:1103.1848] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].
  3. [3]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046[arXiv:0902.2987] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: Part II, Nucl. Phys. B 869 (2013) 378 [arXiv:1103.4353] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. Kallosh and T. Ortín, New E77 invariants and amplitudes, JHEP 09 (2012) 137 [arXiv:1205.4437] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].
  9. [9]
    M. Bianchi, H. Elvang and D.Z. Freedman, Generating Tree Amplitudes in N = 4 SYM and N = 8 SG, JHEP 09 (2008) 063 [arXiv:0805.0757] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Brandhuber, P. Heslop and G. Travaglini, A Note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].
  11. [11]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    P. Heslop and A.E. Lipstein, On-shell diagrams for \( \mathcal{N}=8 \) supergravity amplitudes, JHEP 06 (2016) 069 [arXiv:1604.03046] [INSPIRE].
  13. [13]
    E. Herrmann and J. Trnka, Gravity On-shell Diagrams, JHEP 11 (2016) 136 [arXiv:1604.03479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    S. Caron-Huot and D. O’Connell, Spinor Helicity and Dual Conformal Symmetry in Ten Dimensions, JHEP 08 (2011) 014 [arXiv:1010.5487] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    I. Bandos, Britto-Cachazo-Feng-Witten-Type recurrent relations for tree amplitudes of D = 11 supergravity, Phys. Rev. Lett. 118 (2017) 031601 [arXiv:1605.00036] [INSPIRE].
  16. [16]
    I. Bandos, Spinor frame formalism for amplitudes and constrained superamplitudes of 10D SYM and 11D supergravity, arXiv:1711.00914 [INSPIRE].
  17. [17]
    A.S. Galperin, P.S. Howe and K.S. Stelle, The Superparticle and the Lorentz group, Nucl. Phys. B 368 (1992) 248 [hep-th/9201020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    F. Delduc, A. Galperin and E. Sokatchev, Lorentz harmonic (super)fields and (super)particles, Nucl. Phys. B 368 (1992) 143 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    I.A. Bandos and A.Yu. Nurmagambetov, Generalized action principle and extrinsic geometry for N = 1 superparticle, Class. Quant. Grav. 14 (1997) 1597 [hep-th/9610098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    D.V. Uvarov, Spinor description of D = 5 massless low-spin gauge fields, Class. Quant. Grav. 33 (2016) 135010 [arXiv:1506.01881] [INSPIRE].
  21. [21]
    A.S. Galperin, P.S. Howe and P.K. Townsend, Twistor transform for superfields, Nucl. Phys. B 402 (1993) 531 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    I.A. Bandos, J.A. de Azcarraga and D.P. Sorokin, On D = 11 supertwistors, superparticle quantization and a hidden SO(16) symmetry of supergravity, in 22nd Max Born Symposium on Quantum, Super and Twistors: A Conference in Honor of Jerzy Lukierski on His 70th Birthday, Wroclaw, Poland, September 27-29, 2006 [hep-th/0612252] [INSPIRE].
  23. [23]
    I.A. Bandos, Spinor moving frame, M0-brane covariant BRST quantization and intrinsic complexity of the pure spinor approach, Phys. Lett. B 659 (2008) 388 [arXiv:0707.2336] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    I.A. Bandos, D = 11 massless superparticle covariant quantization, pure spinor BRST charge and hidden symmetries, Nucl. Phys. B 796 (2008) 360 [arXiv:0710.4342] [INSPIRE].
  25. [25]
    R.H. Boels and D. O’Connell, Simple superamplitudes in higher dimensions, JHEP 06 (2012) 163 [arXiv:1201.2653] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    R.H. Boels, Maximal R-symmetry violating amplitudes in type IIB superstring theory, Phys. Rev. Lett. 109 (2012) 081602 [arXiv:1204.4208] [INSPIRE].
  27. [27]
    Y. Wang and X. Yin, Constraining Higher Derivative Supergravity with Scattering Amplitudes, Phys. Rev. D 92 (2015) 041701 [arXiv:1502.03810] [INSPIRE].
  28. [28]
    Y. Wang and X. Yin, Supervertices and Non-renormalization Conditions in Maximal Supergravity Theories, arXiv:1505.05861 [INSPIRE].
  29. [29]
    L.V. Bork, D.I. Kazakov, M.V. Kompaniets, D.M. Tolkachev and D.E. Vlasenko, Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions, JHEP 11 (2015) 059 [arXiv:1508.05570] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    A.T. Borlakov, D.I. Kazakov, D.M. Tolkachev and D.E. Vlasenko, Summation of all-loop UV Divergences in Maximally Supersymmetric Gauge Theories, JHEP 12 (2016) 154 [arXiv:1610.05549] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    I. Bandos, On 10D SYM superamplitudes, in 12th International Workshop on Supersymmetries and Quantum Symmetries (SQS17), Dubna, Russia, July 31-August 5, 2017 [arXiv:1712.02857] [INSPIRE].
  32. [32]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace, Class. Quant. Grav. 1 (1984) 469 [Erratum ibid. 2 (1985) 127] [INSPIRE].
  33. [33]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained Off-Shell N = 3 Supersymmetric Yang-Mills Theory, Class. Quant. Grav. 2 (1985) 155[INSPIRE].
  34. [34]
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace, Cambridge University Press, Cambridge, U.K. (2001), pp. 306.Google Scholar
  35. [35]
    I.A. Bandos and A.A. Zheltukhin, Spinor Cartan moving n hedron, Lorentz harmonic formulations of superstrings and kappa symmetry, JETP Lett. 54 (1991) 421 [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    I.A. Bandos and A.A. Zheltukhin, Green-Schwarz superstrings in spinor moving frame formalism, Phys. Lett. B 288 (1992) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    I.A. Bandos and A.A. Zheltukhin, Twistor-like approach in the Green-Schwarz D = 10 superstring theory, Phys. Part. Nucl. 25 (1994) 453 [INSPIRE].Google Scholar
  38. [38]
    I.A. Bandos and A.A. Zheltukhin, Generalization of Newman-Penrose dyads in connection with the action integral for supermembranes in an eleven-dimensional space, JETP Lett. 55 (1992) 81 [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    I.A. Bandos and A.A. Zheltukhin, Eleven-dimensional supermembrane in a spinor moving repere formalism, Int. J. Mod. Phys. A 8 (1993) 1081 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    I.A. Bandos and A.A. Zheltukhin, N = 1 superp-branes in twistor-like Lorentz harmonic formulation, Class. Quant. Grav. 12 (1995) 609 [hep-th/9405113] [INSPIRE].
  41. [41]
    R. Penrose, Twistor algebra, J. Math. Phys. 8 (1967) 345 [INSPIRE].
  42. [42]
    R. Penrose and M.A.H. MacCallum, Twistor theory: An Approach to the quantization of fields and space-time, Phys. Rept. 6 (1972) 241 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Penrose and W. Rindler, Spinors And Space-time. Vol. 1: Two-Spinor Calculus and Relativistic Fields, Cambridge University Press (1984).Google Scholar
  44. [44]
    R. Penrose and W. Rindler, Spinors And Space-time. Vol. 2: Spinor And Twistor Methods In Space-time Geometry, Cambridge University Press (1986).Google Scholar
  45. [45]
    A. Ferber, Supertwistors and Conformal Supersymmetry, Nucl. Phys. B 132 (1978) 55 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    T. Shirafuji, Lagrangian Mechanics of Massless Particles With Spin, Prog. Theor. Phys. 70 (1983) 18 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    A.I. Gumenchuk and D.P. Sorokin, Relativistic superparticle dynamics and twistor correspondence (in Russian), Sov. J. Nucl. Phys. 51 (1990) 350 [INSPIRE].Google Scholar
  48. [48]
    D.P. Sorokin, Double supersymmetric particle theories, Fortsch. Phys. 38 (1990) 923 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    I.A. Bandos, Superparticle in Lorentz harmonic superspace (in Russian), Sov. J. Nucl. Phys. 51 (1990) 906 [INSPIRE].
  50. [50]
    I.A. Bandos and A.A. Zheltukhin, Null super p-brane: Hamiltonian dynamics and quantization, Phys. Lett. B 261 (1991) 245 [INSPIRE].
  51. [51]
    E. Sokatchev, Light Cone Harmonic Superspace and Its Applications, Phys. Lett. B 169 (1986) 209 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    E. Sokatchev, Harmonic superparticle, Class. Quant. Grav. 4 (1987) 237 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    V.P. Akulov, D.P. Sorokin and I.A. Bandos, Particle Mechanics in Harmonic Superspace, Mod. Phys. Lett. A 3 (1988) 1633 [INSPIRE].
  54. [54]
    I.L. Buchbinder and I.B. Samsonov, N = 3 Superparticle model, Nucl. Phys. B 802 (2008) 180 [arXiv:0801.4907] [INSPIRE].
  55. [55]
    I.L. Buchbinder, O. Lechtenfeld and I.B. Samsonov, N = 4 superparticle and super Yang-Mills theory in USp(4) harmonic superspace, Nucl. Phys. B 802 (2008) 208 [arXiv:0804.3063] [INSPIRE].
  56. [56]
    S. Deser and D. Seminara, Tree amplitudes and two loop counterterms in D = 11 supergravity, Phys. Rev. D 62 (2000) 084010 [hep-th/0002241] [INSPIRE].
  57. [57]
    M.B. Green, M. Gutperle and H.H. Kwon, Light cone quantum mechanics of the eleven-dimensional superparticle, JHEP 08 (1999) 012 [hep-th/9907155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    M.B. Green and J.H. Schwarz, Supersymmetrical Dual String Theory. 3. Loops and Renormalization, Nucl. Phys. B 198 (1982) 441 [INSPIRE].
  59. [59]
    J.H. Schwarz, Superstring Theory, Phys. Rept. 89 (1982) 223 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. Adamo, E. Casali and D. Skinner, A Worldsheet Theory for Supergravity, JHEP 02 (2015) 116 [arXiv:1409.5656] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    I. Bandos, Twistor/ambitwistor strings and null-superstrings in spacetime of D = 4, 10 and 11 dimensions, JHEP 09 (2014) 086 [arXiv:1404.1299] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    E. Casali and P. Tourkine, On the null origin of the ambitwistor string, JHEP 11 (2016) 036 [arXiv:1606.05636] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    E. Casali, Y. Herfray and P. Tourkine, The complex null string, Galilean conformal algebra and scattering equations, JHEP 10 (2017) 164 [arXiv:1707.09900] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    I.A. Bandos, J.A. de Azcarraga and C. Miquel-Espanya, Superspace formulations of the (super)twistor string, JHEP 07 (2006) 005 [hep-th/0604037] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    N. Berkovits, An Alternative string theory in twistor space for N = 4 superYang-Mills, Phys. Rev. Lett. 93 (2004) 011601 [hep-th/0402045] [INSPIRE].
  68. [68]
    W. Siegel, Untwisting the twistor superstring, hep-th/0404255 [INSPIRE].
  69. [69]
    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor Strings in Four Dimensions, Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].
  70. [70]
    A. Lipstein and V. Schomerus, Towards a Worldsheet Description of N = 8 Supergravity, arXiv:1507.02936 [INSPIRE].
  71. [71]
    L.V. Bork and A.I. Onishchenko, Four dimensional ambitwistor strings and form factors of local and Wilson line operators, arXiv:1704.04758 [INSPIRE].
  72. [72]
    L.V. Bork and A.I. Onishchenko, Ambitwistor strings and reggeon amplitudes in N = 4 SYM, Phys. Lett. B 774 (2017) 403 [arXiv:1704.00611] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J.A. Farrow and A.E. Lipstein, From 4d Ambitwistor Strings to On Shell Diagrams and Back, JHEP 07 (2017) 114 [arXiv:1705.07087] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Theoretical Physics, University of the Basque Country UPV/EHUBilbaoSpain
  2. 2.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations