On the local structure of spacetime in ghost-free bimetric theory and massive gravity

  • S. F. Hassan
  • Mikica Kocic
Open Access
Regular Article - Theoretical Physics


The ghost-free bimetric theory describes interactions of gravity with another spin-2 field in terms of two Lorentzian metrics. However, if the two metrics do not admit compatible notions of space and time, the formulation of the initial value problem becomes problematic. Furthermore, the interaction potential is given in terms of the square root of a matrix which is in general nonunique and possibly nonreal. In this paper we show that both these issues are evaded by requiring reality and general covariance of the equations. First we prove that the reality of the square root matrix leads to a classification of the allowed metrics in terms of the intersections of their null cones. Then, the requirement of general covariance further restricts the allowed metrics to geometries that admit compatible notions of space and time. It also selects a unique definition of the square root matrix. The restrictions are compatible with the equations of motion. These results ensure that the ghost-free bimetric theory can be defined unambiguously and that the two metrics always admit compatible 3+1 decompositions, at least locally. In particular, these considerations rule out certain solutions of massive gravity with locally Closed Causal Curves, which have been used to argue that the theory is acausal.


Classical Theories of Gravity Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  3. [3]
    C.J. Isham, A. Salam and J.A. Strathdee, F-dominance of gravity, Phys. Rev. D 3 (1971) 867 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    B. Zumino, Effective Lagrangians and Broken Symmetries, in Lectures on Elementary Particles and Quantum Field Theory, volume 2, Brandeis University, Cambridge, MA, U.S.A., (1970), pp. 437-500.Google Scholar
  5. [5]
    N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.F. Hassan and R.A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].
  8. [8]
    S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S.F. Hassan and R.A. Rosen, Confirmation of the Secondary Constraint and Absence of Ghost in Massive Gravity and Bimetric Gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P. Creminelli, A. Nicolis, M. Papucci and E. Trincherini, Ghosts in massive gravity, JHEP 09 (2005) 003 [hep-th/0505147] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Ostrogradsky, Mémoires sur les équations différentielles, relatives au problème des isopérimètres, (In French), Mem. Ac. St. Petersbourg 4 (1850) 385.Google Scholar
  13. [13]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].
  14. [14]
    S.F. Hassan and R.A. Rosen, On Non-Linear Actions for Massive Gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free Massive Gravity with a General Reference Metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Proof of Consistency of Nonlinear Massive Gravity in the Stúckelberg Formulation, Phys. Lett. B 715 (2012) 335 [arXiv:1203.5283] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, Degrees of Freedom in Massive Gravity, Phys. Rev. D 86 (2012) 101502 [arXiv:1204.1027] [INSPIRE].ADSzbMATHGoogle Scholar
  18. [18]
    J. Kluson, Non-Linear Massive Gravity with Additional Primary Constraint and Absence of Ghosts, Phys. Rev. D 86 (2012) 044024 [arXiv:1204.2957] [INSPIRE].
  19. [19]
    C. Deffayet, J. Mourad and G. Zahariade, Covariant constraints in ghost free massive gravity, JCAP 01 (2013) 032 [arXiv:1207.6338] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    T. Kugo and N. Ohta, Covariant Approach to the No-ghost Theorem in Massive Gravity, PTEP 2014 (2014) 043B04 [arXiv:1401.3873] [INSPIRE].
  21. [21]
    M. Kocic, Geometric mean of bimetric spacetimes, arXiv:1803.09752 [INSPIRE].
  22. [22]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, On Consistent Theories of Massive Spin-2 Fields Coupled to Gravity, JHEP 05 (2013) 086 [arXiv:1208.1515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].CrossRefzbMATHGoogle Scholar
  24. [24]
    A. Schmidt-May and M. von Strauss, Recent developments in bimetric theory, J. Phys. A 49 (2016) 183001 [arXiv:1512.00021] [INSPIRE].
  25. [25]
    P. Martín-Moruno, V. Baccetti and M. Visser, Massive gravity as a limit of bimetric gravity, in Proceedings, 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (MG13): Stockholm, Sweden, July 1-7, 2012, pp. 1270-1272, arXiv:1302.2687 [INSPIRE].
  26. [26]
    Y. Akrami, S.F. Hassan, F. Könnig, A. Schmidt-May and A.R. Solomon, Bimetric gravity is cosmologically viable, Phys. Lett. B 748 (2015) 37 [arXiv:1503.07521] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Extended Weyl Invariance in a Bimetric Model and Partial Masslessness, Class. Quant. Grav. 33 (2016) 015011 [arXiv:1507.06540] [INSPIRE].
  28. [28]
    E. Gourgoulhon, 3+1 Formalism in General Relativity, Springer (2012), [].
  29. [29]
    Y. Choquet-Bruhat and R.P. Geroch, Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys. 14 (1969) 329 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A.N. Bernal and M. Sanchez, On smooth Cauchy hypersurfaces and Gerochs splitting theorem, Commun. Math. Phys. 243 (2003) 461 [gr-qc/0306108] [INSPIRE].
  31. [31]
    P.A.M. Dirac, The Theory of gravitation in Hamiltonian form, Proc. Roy. Soc. Lond. A 246 (1958) 333.Google Scholar
  32. [32]
    R.L. Arnowitt, S. Deser and C.W. Misner, Canonical variables for general relativity, Phys. Rev. 117 (1960) 1595 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    N.J. Higham, Functions of Matrices: Theory and Computation, SIAM, (2008), [].
  34. [34]
    N.J. Higham, Computing real square roots of a real matrix, Linear Algebra Appl. 88-89 (1987) 405.Google Scholar
  35. [35]
    R.A. Horn and C.R. Johnson. Topics in Matrix Analysis, Cambridge University Press, (1994), [].
  36. [36]
    F. Uhlig, Simultaneous block diagonalization of two real symmetric matrices, Linear Algebra Appl. 7 (1973) 281.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    F. Uhlig, A canonical form for a pair of real symmetric matrices that generate a nonsingular pencil, Linear Algebra Appl. 14 (1976) 189.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    F. Uhlig, A recurring theorem about pairs of quadratic forms and extensions: a survey, Linear Algebra Appl. 25 (1979) 219.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    F.R. Gantmacher, The Theory of Matrices, volume 2, Chelsea (1959).Google Scholar
  40. [40]
    Y.P. Hong, R.A. Horn and C.R. Johnson, On the reduction of pairs of Hermitian or symmetric matrices to diagonal form by congruence, Linear Algebra Appl. 73 (1986) 213.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, (1990), [].
  42. [42]
    V. Baccetti, P. Martín-Moruno and M. Visser, Gordon and Kerr-Schild ansatze in massive and bimetric gravity, JHEP 08 (2012) 108 [arXiv:1206.4720] [INSPIRE].
  43. [43]
    S. Dey, A. Fring and T. Mathanaranjan, Spontaneous PT-Symmetry Breaking for Systems of Noncommutative Euclidean Lie Algebraic Type, Int. J. Theor. Phys. 54 (2015) 4027 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    R.A. d’Inverno and J. Smallwood, Covariant 2+2 formulation of the initial-value problem in general relativity, Phys. Rev. D 22 (1980) 1233 [INSPIRE].
  45. [45]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Bimetric theory and partial masslessness with Lanczos-Lovelock terms in arbitrary dimensions, Class. Quant. Grav. 30 (2013) 184010 [arXiv:1212.4525] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    S.F. Hassan, M. Kocic and A. Schmidt-May, Absence of ghost in a new bimetric-matter coupling, arXiv:1409.1909 [INSPIRE].
  47. [47]
    L. Bernard, C. Deffayet and M. von Strauss, Massive graviton on arbitrary background: derivation, syzygies, applications, JCAP 06 (2015) 038 [arXiv:1504.04382] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    K. Izumi and Y.C. Ong, An analysis of characteristics in nonlinear massive gravity, Class. Quant. Grav. 30 (2013) 184008 [arXiv:1304.0211] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    S. Deser, K. Izumi, Y.C. Ong and A. Waldron, Massive Gravity Acausality Redux, Phys. Lett. B 726 (2013) 544 [arXiv:1306.5457] [INSPIRE].
  50. [50]
    S. Deser, K. Izumi, Y.C. Ong and A. Waldron, Superluminal Propagation and Acausality of Nonlinear Massive Gravity, in Proceedings, Conference in Honor of the 90th Birthday of Freeman Dyson: Singapore, Singapore, August 26-29, 2013, pp. 430-435, 2014, arXiv:1312.1115 [INSPIRE].
  51. [51]
    S. Deser, M. Sandora, A. Waldron and G. Zahariade, Covariant constraints for generic massive gravity and analysis of its characteristics, Phys. Rev. D 90 (2014) 104043 [arXiv:1408.0561] [INSPIRE].
  52. [52]
    S. Deser, K. Izumi, Y.C. Ong and A. Waldron, Problems of massive gravities, Mod. Phys. Lett. A 30 (2015) 1540006 [arXiv:1410.2289] [INSPIRE].
  53. [53]
    R. Geroch, Faster Than Light?, AMS/IP Stud. Adv. Math. 49 (2011) 59 [arXiv:1005.1614] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    E. Babichev, V. Mukhanov and A. Vikman, k-Essence, superluminal propagation, causality and emergent geometry, JHEP 02 (2008) 101 [arXiv:0708.0561] [INSPIRE].
  55. [55]
    M. Düll, F.P. Schuller, N. Stritzelberger and F. Wolz, Gravitational closure of matter field equations, Phys. Rev. D 97 (2018) 084036 [arXiv:1611.08878] [INSPIRE].
  56. [56]
    I.T. Drummond, Quantum field theory in a multimetric background, Phys. Rev. D 88 (2013) 025009 [arXiv:1303.3126] [INSPIRE].
  57. [57]
    M.S. Volkov, Stability of Minkowski space in ghost-free massive gravity theory, Phys. Rev. D 90 (2014) 024028 [arXiv:1402.2953] [INSPIRE].
  58. [58]
    M.S. Volkov, Energy in ghost-free massive gravity theory, Phys. Rev. D 90 (2014) 124090 [arXiv:1404.2291] [INSPIRE].
  59. [59]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Particular Solutions in Bimetric Theory and Their Implications, Int. J. Mod. Phys. D 23 (2014) 1443002 [arXiv:1407.2772] [INSPIRE].
  60. [60]
    K. Hinterbichler and R.A. Rosen, Interacting Spin-2 Fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    M. Bojowald, Canonical Gravity and Applications, Cambridge University Press, (2010), [].
  62. [62]
    X.O. Camanho, G. Lucena Gómez and R. Rahman, Causality Constraints on Massive Gravity, Phys. Rev. D 96 (2017) 084007 [arXiv:1610.02033] [INSPIRE].ADSGoogle Scholar
  63. [63]
    S. Alexandrov, Canonical structure of Tetrad Bimetric Gravity, Gen. Rel. Grav. 46 (2014) 1639 [arXiv:1308.6586] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    S.F. Hassan and A. Lundkvist, Analysis of constraints and their algebra in bimetric theory, arXiv:1802.07267 [INSPIRE].
  65. [65]
    L. Bernard, C. Deffayet, A. Schmidt-May and M. von Strauss, Linear spin-2 fields in most general backgrounds, Phys. Rev. D 93 (2016) 084020 [arXiv:1512.03620] [INSPIRE].
  66. [66]
    C. Deffayet, J. Mourad and G. Zahariade, A note onsymmetricvielbeins in bimetric, massive, perturbative and non perturbative gravities, JHEP 03 (2013) 086 [arXiv:1208.4493] [INSPIRE].
  67. [67]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Metric Formulation of Ghost-Free Multivielbein Theory, arXiv:1204.5202 [INSPIRE].
  68. [68]
    L. Apolo and S.F. Hassan, Non-linear partially massless symmetry in an SO(1,5) continuation of conformal gravity, Class. Quant. Grav. 34 (2017) 105005 [arXiv:1609.09514] [INSPIRE].
  69. [69]
    C. Cheung and G.N. Remmen, Positive Signs in Massive Gravity, JHEP 04 (2016) 002 [arXiv:1601.04068] [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    D. Comelli, M. Crisostomi, K. Koyama, L. Pilo and G. Tasinato, New Branches of Massive Gravity, Phys. Rev. D 91 (2015) 121502 [arXiv:1505.00632] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics & The Oskar Klein CentreStockholm University, AlbaNova University CentreStockholmSweden

Personalised recommendations