Advertisement

The DOZZ formula from the path integral

  • Antti Kupiainen
  • Rémi Rhodes
  • Vincent Vargas
Open Access
Regular Article - Theoretical Physics
  • 40 Downloads

Abstract

We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functional integral defining LCFT given earlier by the authors and David. A crucial ingredient in our argument is a probabilistic derivation of the reflection relation in LCFT based on a refined tail analysis of Gaussian multiplicative chaos measures.

Keywords

Conformal Field Theory Conformal Field Models in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Bytsko and J. Teschner, The Integrable structure of nonrational conformal field theory, Adv. Theor. Math. Phys. 17 (2013) 701 [arXiv:0902.4825] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    X. Cao, P. Le Doussal, A. Rosso and R. Santachiara, Liouville field theory and log-correlated Random Energy Models, Phys. Rev. Lett. 118 (2017) 090601 [arXiv:1611.02193] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. David, A. Kupiainen, R. Rhodes and V. Vargas, Liouville Quantum Gravity on the Riemann sphere, Commun. Math. Phys. 342 (2016) 869 [arXiv:1410.7318] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    F. David, A. Kupiainen, R. Rhodes and V. Vargas, Renormalizability of Liouville Quantum Gravity at the Seiberg bound, arXiv:1506.01968 [INSPIRE].
  7. [7]
    H. Dorn and H.J. Otto, On correlation functions for noncritical strings with c ≤ 1 d ≥ 1, Phys. Lett. B 291 (1992) 39 [hep-th/9206053] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H. Dorn and H.J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Goulian and M. Li, Correlation functions in Liouville theory, Phys. Rev. Lett. 66 (1991) 2051 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    V.A. Fateev and A.V. Litvinov, Multipoint correlation functions in Liouville field theory and minimal Liouville gravity, Theor. Math. Phys. 154 (2008) 454 [arXiv:0707.1664] [INSPIRE].CrossRefzbMATHGoogle Scholar
  11. [11]
    V.A. Fateev and A.V. Litvinov, Correlation functions in conformal Toda field theory II, JHEP 01 (2009) 033 [arXiv:0810.3020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D. Harlow, J. Maltz and E. Witten, Analytic Continuation of Liouville Theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J.-P. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Québec 9 (1985) 105.MathSciNetzbMATHGoogle Scholar
  14. [14]
    V.G. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov, Fractal Structure of 2D Quantum Gravity, Mod. Phys. Lett. A 3 (1988) 819 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Kupiainen, R. Rhodes and V. Vargas, Conformal Ward and BPZ Identities for Liouville quantum field theory, arXiv:1512.01802 [INSPIRE].
  16. [16]
    A. Kupiainen, R. Rhodes and V. Vargas, Integrability of Liouville theory: proof of the DOZZ Formula, arXiv:1707.08785 [INSPIRE].
  17. [17]
    A.M. Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S. Ribault, Conformal field theory on the plane, arXiv:1406.4290 [INSPIRE].
  19. [19]
    N. Seiberg, Notes on Quantum Liouville Theory and Quantum Gravity, Prog. Theor. Phys. Suppl. 102 (1990) 319.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Teschner, On the Liouville three point function, Phys. Lett. B 363 (1995) 65 [hep-th/9507109] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, hep-th/9911110 [INSPIRE].
  22. [22]
    J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Teschner, A lecture on the Liouville vertex operators, Int. J. Mod. Phys. A19S2 (2004) 436.Google Scholar
  24. [24]
    Troyanov M.: Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc. 324 (1991) 793.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.University of Helsinki, Department of Mathematics and Statistics, P.O. FinlandHelsinkiFinland
  2. 2.Université Paris-Est Marne la Vallée, LAMAChamps sur MarneFrance
  3. 3.ENS Ulm, DMAParisFrance

Personalised recommendations