Towards a bulk description of higher spin SYK

  • Hernán A. González
  • Daniel Grumiller
  • Jakob Salzer
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We consider on the bulk side extensions of the Sachdev-Ye-Kitaev (SYK) model to Yang-Mills and higher spins. To this end we study generalizations of the Jackiw-Teitelboim (JT) model in the BF formulation. Our main goal is to obtain generalizations of the Schwarzian action, which we achieve in two ways: by considering the on-shell action supplemented by suitable boundary terms compatible with all symmetries, and by applying the Lee-Wald-Zoupas formalism to analyze the symplectic structure of dilaton gravity. We conclude with a discussion of the entropy (including log-corrections from higher spins) and a holographic dictionary for the generalized SYK/JT correspondence.

Keywords

2D Gravity AdS-CFT Correspondence Field Theories in Lower Dimensions Higher Spin Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Kitaev, A simple model of quantum holography (part 1), in KITP strings seminars, http://online.kitp.ucsb.edu/online/entangled15/kitaev/, KITP, University of California, Santa Barbara U.S.A., 7 April 2015.
  2. [2]
    A. Kitaev, A simple model of quantum holography (part 2), in KITP strings seminars, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/, KITP, University of California, Santa Barbara U.S.A., 27 May 2015.
  3. [3]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  4. [4]
    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    R. Jackiw, Liouville field theory: a two-dimensional model for gravity?, in Quantum theory of gravity, S. Christensen ed., Adam Hilger, Bristol U.K., (1984), pg. 403.Google Scholar
  7. [7]
    C. Teitelboim, The Hamiltonian structure of two-dimensional space-time and its relation with the conformal anomaly, in Quantum theory of gravity, S. Christensen ed., Adam Hilger, Bristol U.K., (1984), pg. 327.Google Scholar
  8. [8]
    D.J. Gross and V. Rosenhaus, A line of CFTs: from generalized free fields to SYK, JHEP 07 (2017) 086 [arXiv:1706.07015] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    I. Bengtsson and P. Sandin, Anti de Sitter space, squashed and stretched, Class. Quant. Grav. 23 (2006) 971 [gr-qc/0509076] [INSPIRE].
  10. [10]
    E.S. Fradkin and V. Ya. Linetsky, Higher spin symmetry in one-dimension and two-dimensions. 1, Mod. Phys. Lett. A 4 (1989) 2635 [INSPIRE].
  11. [11]
    E.S. Fradkin and V. Ya. Linetsky, Higher spin symmetry in one-dimension and two-dimensions. 2, Mod. Phys. Lett. A 4 (1989) 2649 [INSPIRE].
  12. [12]
    K. Li, Construction of topological W 3 gravity, Phys. Lett. B 251 (1990) 54 [INSPIRE].
  13. [13]
    K. Li, Action for topological W gravity, Nucl. Phys. B 346 (1990) 329 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M.A. Vasiliev, Higher spin gauge interactions for matter fields in two-dimensions, Phys. Lett. B 363 (1995) 51 [hep-th/9511063] [INSPIRE].
  15. [15]
    S.-J. Rey, News from higher spins: W , black holes and entropy, talk at the Simons Workshop on Higher Spin Gravity and Holography, SCGP, Stony Brook University, Stony Brook U.S.A., (2011).
  16. [16]
    K.B. Alkalaev, On higher spin extension of the Jackiw-Teitelboim gravity model, J. Phys. A 47 (2014) 365401 [arXiv:1311.5119] [INSPIRE].MathSciNetMATHGoogle Scholar
  17. [17]
    D. Grumiller, M. Leston and D. Vassilevich, Anti-de Sitter holography for gravity and higher spin theories in two dimensions, Phys. Rev. D 89 (2014) 044001 [arXiv:1311.7413] [INSPIRE].
  18. [18]
    K.B. Alkalaev, Global and local properties of AdS 2 higher spin gravity, JHEP 10 (2014) 122 [arXiv:1404.5330] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    M. Mezei, S.S. Pufu and Y. Wang, A 2d/1d holographic duality, arXiv:1703.08749 [INSPIRE].
  20. [20]
    J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry protected topological states, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].
  22. [22]
    A. Jevicki, K. Suzuki and J. Yoon, Bi-local holography in the SYK model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    K. Jensen, Chaos in AdS 2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  25. [25]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].
  27. [27]
    L. García- Álvarez, I.L. Egusquiza, L. Lamata, A. del Campo, J. Sonner and E. Solano, Digital quantum simulation of minimal AdS/CFT, Phys. Rev. Lett. 119 (2017) 040501 [arXiv:1607.08560] [INSPIRE].
  28. [28]
    A. Jevicki and K. Suzuki, Bi-local holography in the SYK model: perturbations, JHEP 11 (2016) 046 [arXiv:1608.07567] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  29. [29]
    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    D.J. Gross and V. Rosenhaus, A generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher dimensional generalizations of the SYK model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
  33. [33]
    S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95 (2017) 134302 [arXiv:1610.04619] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [Addendum ibid. D 95 (2017) 069904] [arXiv:1610.08917] [INSPIRE].
  35. [35]
    E. Witten, An SYK-like model without disorder, arXiv:1610.09758 [INSPIRE].
  36. [36]
    J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].
  38. [38]
    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
  39. [39]
    C. Peng, M. Spradlin and A. Volovich, A supersymmetric SYK-like tensor model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    C. Krishnan, S. Sanyal and P.N. Bala Subramanian, Quantum chaos and holographic tensor models, JHEP 03 (2017) 056 [arXiv:1612.06330] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    G. Turiaci and H. Verlinde, Towards a 2d QFT analog of the SYK model, JHEP 10 (2017) 167 [arXiv:1701.00528] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    F. Ferrari, The large D limit of planar diagrams, arXiv:1701.01171 [INSPIRE].
  43. [43]
    Z. Bi, C.-M. Jian, Y.-Z. You, K.A. Pawlak and C. Xu, Instability of the non-Fermi liquid state of the Sachdev-Ye-Kitaev model, Phys. Rev. B 95 (2017) 205105 [arXiv:1701.07081] [INSPIRE].
  44. [44]
    T. Li, J. Liu, Y. Xin and Y. Zhou, Supersymmetric SYK model and random matrix theory, JHEP 06 (2017) 111 [arXiv:1702.01738] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    R. Gurau, Quenched equals annealed at leading order in the colored SYK model, EPL 119 (2017) 30003 [arXiv:1702.04228] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Mandal, P. Nayak and S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, JHEP 11 (2017) 046 [arXiv:1702.04266] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    D.J. Gross and V. Rosenhaus, The bulk dual of SYK: cubic couplings, JHEP 05 (2017) 092 [arXiv:1702.08016] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the conformal bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    C. Krishnan and K.V.P. Kumar, Towards a finite-N hologram, JHEP 10 (2017) 099 [arXiv:1706.05364] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    D. Stanford and E. Witten, Fermionic localization of the Schwarzian theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    D. Grumiller, R. McNees, J. Salzer, C. Valcárcel and D. Vassilevich, Menagerie of AdS 2 boundary conditions, JHEP 10 (2017) 203 [arXiv:1708.08471] [INSPIRE].
  52. [52]
    K. Isler and C.A. Trugenberger, A gauge theory of two-dimensional quantum gravity, Phys. Rev. Lett. 63 (1989) 834 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    A.H. Chamseddine and D. Wyler, Gauge theory of topological gravity in (1 + 1)-dimensions, Phys. Lett. B 228 (1989) 75 [INSPIRE].
  54. [54]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].
  56. [56]
    A.P. Balachandran, L. Chandar and A. Momen, Edge states in gravity and black hole physics, Nucl. Phys. B 461 (1996) 581 [gr-qc/9412019] [INSPIRE].
  57. [57]
    M. Henneaux, G. Lucena Gómez, J. Park and S.-J. Rey, Super-W asymptotic symmetry of higher-spin AdS 3 supergravity, JHEP 06 (2012) 037 [arXiv:1203.5152] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017 [arXiv:1208.1851] [INSPIRE].
  59. [59]
    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    R.M. Wald and A. Zoupas, A general definition ofconserved quantitiesin general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].
  61. [61]
    J. Gegenberg, G. Kunstatter and T. Strobl, Edge states and entropy of 2D black holes, Phys. Rev. D 55 (1997) 7651 [gr-qc/9612033] [INSPIRE].
  62. [62]
    J.G. Russo and A.A. Tseytlin, Scalar tensor quantum gravity in two-dimensions, Nucl. Phys. B 382 (1992) 259 [hep-th/9201021] [INSPIRE].
  63. [63]
    S.D. Odintsov and I.L. Shapiro, One loop renormalization of two-dimensional induced quantum gravity, Phys. Lett. B 263 (1991) 183 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    T. Banks and M. O’Loughlin, Two-dimensional quantum gravity in Minkowski space, Nucl. Phys. B 362 (1991) 649 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    R.B. Mann, A. Shiekh and L. Tarasov, Classical and quantum properties of two-dimensional black holes, Nucl. Phys. B 341 (1990) 134 [INSPIRE].
  66. [66]
    D. Cangemi and R. Jackiw, Gauge invariant formulations of lineal gravity, Phys. Rev. Lett. 69 (1992) 233 [hep-th/9203056] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    A. Achucarro, Lineal gravity from planar gravity, Phys. Rev. Lett. 70 (1993) 1037 [hep-th/9207108] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    N. Ikeda, Two-dimensional gravity and nonlinear gauge theory, Annals Phys. 235 (1994) 435 [hep-th/9312059] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    N. Ikeda and K.I. Izawa, General form of dilaton gravity and nonlinear gauge theory, Prog. Theor. Phys. 90 (1993) 237 [hep-th/9304012] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    P. Schaller and T. Strobl, Poisson structure induced (topological) field theories, Mod. Phys. Lett. A 9 (1994) 3129 [hep-th/9405110] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Topological field theory, Phys. Rept. 209 (1991) 129 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    K.I. Izawa, On nonlinear gauge theory from a deformation theory perspective, Prog. Theor. Phys. 103 (2000) 225 [hep-th/9910133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    G. Barnich and M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation, Phys. Lett. B 311 (1993) 123 [hep-th/9304057] [INSPIRE].
  74. [74]
    D. Grumiller, W. Kummer and D.V. Vassilevich, Dilaton gravity in two-dimensions, Phys. Rept. 369 (2002) 327 [hep-th/0204253] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    D. Grumiller and R. Meyer, Ramifications of lineland, Turk. J. Phys. 30 (2006) 349 [hep-th/0604049] [INSPIRE].Google Scholar
  76. [76]
    T. Strobl, Gravity from Lie algebroid morphisms, Commun. Math. Phys. 246 (2004) 475 [hep-th/0310168] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    A. Strominger, AdS 2 quantum gravity and string theory, JHEP 01 (1999) 007 [hep-th/9809027] [INSPIRE].
  78. [78]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  79. [79]
    M. Cadoni and S. Mignemi, Asymptotic symmetries of AdS 2 and conformal group in d = 1, Nucl. Phys. B 557 (1999) 165 [hep-th/9902040] [INSPIRE].
  80. [80]
    M. Brigante, S. Cacciatori, D. Klemm and D. Zanon, The asymptotic dynamics of two-dimensional (anti-)de Sitter gravity, JHEP 03 (2002) 005 [hep-th/0202073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  81. [81]
    M. Astorino, S. Cacciatori, D. Klemm and D. Zanon, AdS 2 supergravity and superconformal quantum mechanics, Annals Phys. 304 (2003) 128 [hep-th/0212096] [INSPIRE].
  82. [82]
    H.L. Verlinde, Superstrings on AdS 2 and superconformal matrix quantum mechanics, hep-th/0403024 [INSPIRE].
  83. [83]
    D. Grumiller and R. McNees, Thermodynamics of black holes in two (and higher) dimensions, JHEP 04 (2007) 074 [hep-th/0703230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    R.K. Gupta and A. Sen, AdS 3 /CFT 2 to AdS 2 /CFT 1, JHEP 04 (2009) 034 [arXiv:0806.0053] [INSPIRE].
  85. [85]
    M. Alishahiha and F. Ardalan, Central charge for 2D gravity on AdS 2 and AdS 2 /CFT 1 correspondence, JHEP 08 (2008) 079 [arXiv:0805.1861] [INSPIRE].
  86. [86]
    A. Sen, Quantum entropy function from AdS 2 /CFT 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].
  87. [87]
    T. Hartman and A. Strominger, Central charge for AdS 2 quantum gravity, JHEP 04 (2009) 026 [arXiv:0803.3621] [INSPIRE].
  88. [88]
    A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic description of AdS 2 black holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari and J. Simón, What is a chiral 2d CFT? And what does it have to do with extremal black holes?, JHEP 02 (2010) 017 [arXiv:0906.3272] [INSPIRE].
  90. [90]
    A. Castro and F. Larsen, Near extremal Kerr entropy from AdS 2 quantum gravity, JHEP 12 (2009) 037 [arXiv:0908.1121] [INSPIRE].
  91. [91]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
  93. [93]
    D. Grumiller, J. Salzer and D. Vassilevich, AdS 2 holography is (non-)trivial for (non-)constant dilaton, JHEP 12 (2015) 015 [arXiv:1509.08486] [INSPIRE].ADSGoogle Scholar
  94. [94]
    M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2013) 048 [arXiv:1309.4362] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    E. Witten, Coadjoint orbits of the Virasoro group, Commun. Math. Phys. 114 (1988) 1 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  96. [96]
    J. Balog, L. Feher and L. Palla, Coadjoint orbits of the Virasoro algebra and the global Liouville equation, Int. J. Mod. Phys. A 13 (1998) 315 [hep-th/9703045] [INSPIRE].
  97. [97]
    B. Oblak, BMS particles in three dimensions, Ph.D. thesis, Brussels U., Brussels Belgium, (2016), Springer, Cham Switzerland, (2017) [arXiv:1610.08526] [INSPIRE].
  98. [98]
    H. Afshar, S. Detournay, D. Grumiller and B. Oblak, Near-horizon geometry and warped conformal symmetry, JHEP 03 (2016) 187 [arXiv:1512.08233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    J. Yoon, SYK models and SYK-like tensor models with global symmetry, JHEP 10 (2017) 183 [arXiv:1707.01740] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  100. [100]
    D. Cangemi and G.V. Dunne, Extended de Sitter theory of two-dimensional gravitational forces, Phys. Rev. D 48 (1993) 5721 [hep-th/9308021] [INSPIRE].
  101. [101]
    D. Grumiller, R. McNees and J. Salzer, Cosmological constant as confining U(1) charge in two-dimensional dilaton gravity, Phys. Rev. D 90 (2014) 044032 [arXiv:1406.7007] [INSPIRE].
  102. [102]
    V.Y. Ovsienko, Classification of third-order linear differential equations and symplectic sheets of the Gelfand-Dikii bracket, Math. Notes Acad. Sci. USSR 47 (1990) 465 [Mat. Zametki 47 (1990) 62].Google Scholar
  103. [103]
    G. Barnich, H.A. González and P. Salgado-ReboLledó, Geometric actions for three-dimensional gravity, Class. Quant. Grav. 35 (2018) 014003 [arXiv:1707.08887] [INSPIRE].
  104. [104]
    A. Alekseev and S.L. Shatashvili, Path integral quantization of the coadjoint orbits of the Virasoro group and 2D gravity, Nucl. Phys. B 323 (1989) 719 [INSPIRE].
  105. [105]
    A. Alekseev, L.D. Faddeev and S.L. Shatashvili, Quantization of symplectic orbits of compact Lie groups by means of the functional integral, J. Geom. Phys. 5 (1988) 391 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  106. [106]
    G. Dzhordzhadze, L. O’Raifeartaigh and I. Tsutsui, Quantization of a relativistic particle on the SL(2, R) manifold based on Hamiltonian reduction, Phys. Lett. B 336 (1994) 388 [hep-th/9407059] [INSPIRE].
  107. [107]
    M. Heinze, B. Hoare, G. Jorjadze and L. Megrelidze, Orbit method quantization of the AdS 2 superparticle, J. Phys. A 48 (2015) 315403 [arXiv:1504.04175] [INSPIRE].
  108. [108]
    J. Gomis, J. Herrero, K. Kamimura and J. Roca, Finite W 3 transformations in a multitime approach, Phys. Lett. B 339 (1994) 59 [hep-th/9409024] [INSPIRE].
  109. [109]
    P. Di Francesco, C. Itzykson and J.B. Zuber, Classical W algebras, Commun. Math. Phys. 140 (1991) 543 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  110. [110]
    A. Forsyth, Theory of differential equations, vol. 4, Cambridge University Press, Cambridge U.K., (1902).Google Scholar
  111. [111]
    S. Govindarajan, Higher dimensional uniformization and W geometry, Nucl. Phys. B 457 (1995) 357 [hep-th/9412078] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  112. [112]
    A. Marshakov and A. Morozov, A note on W 3 algebra, Nucl. Phys. B 339 (1990) 79 [Sov. Phys. JETP 70 (1990) 403] [INSPIRE].
  113. [113]
    W. Li and S. Theisen, Some aspects of holographic W -gravity, JHEP 08 (2015) 035 [arXiv:1504.07799] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  114. [114]
    V.Y. Ovsienko and B.A. Khesin, Symplectic leaves of the Gelfand-Dikii brackets and homotopy classes of nondegenerate curves, Funct. Anal. Appl. 24 (1990) 33.Google Scholar
  115. [115]
    M.Z. Shapiro, Topology of the space of nondegenerate curves, Funct. Anal. Appl. 26 (1992) 227.MathSciNetCrossRefMATHGoogle Scholar
  116. [116]
    Z. Bajnok and D. Nogradi, Geometry of W algebras from the affine Lie algebra point of view, J. Phys. A 34 (2001) 4811 [hep-th/0012190] [INSPIRE].
  117. [117]
    S.T.V. Ovsienko, Projective differential geometry old and new: from the Schwarzian derivative to the cohomology of diffeomorphism groups, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge U.K., (2004).Google Scholar
  118. [118]
    M. Bañados, C. Teitelboim and J. Zanelli, Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem, Phys. Rev. Lett. 72 (1994) 957 [gr-qc/9309026] [INSPIRE].
  119. [119]
    S.W. Hawking, G.T. Horowitz and S.F. Ross, Entropy, area and black hole pairs, Phys. Rev. D 51 (1995) 4302 [gr-qc/9409013] [INSPIRE].
  120. [120]
    C. Teitelboim, Action and entropy of extreme and nonextreme black holes, Phys. Rev. D 51 (1995) 4315 [Erratum ibid. D 52 (1995) 6201] [hep-th/9410103] [INSPIRE].
  121. [121]
    M. Bañados, R. Canto and S. Theisen, The action for higher spin black holes in three dimensions, JHEP 07 (2012) 147 [arXiv:1204.5105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  122. [122]
    J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, JHEP 01 (2014) 023 [arXiv:1302.0816] [INSPIRE].CrossRefMATHGoogle Scholar
  123. [123]
    G. Compère, J.I. Jottar and W. Song, Observables and microscopic entropy of higher spin black holes, JHEP 11 (2013) 054 [arXiv:1308.2175] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    C. Bunster, M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Generalized black holes in three-dimensional spacetime, JHEP 05 (2014) 031 [arXiv:1404.3305] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  125. [125]
    D. Grumiller, P. Hacker and W. Merbis, Soft hairy warped black hole entropy, JHEP 02 (2018) 010 [arXiv:1711.07975] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  126. [126]
    R.M. Wald, Black hole entropy is the Nöther charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  127. [127]
    V. Iyer and R.M. Wald, Some properties of Nöther charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  128. [128]
    A. Sen, Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions, JHEP 04 (2013) 156 [arXiv:1205.0971] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  129. [129]
    H. Verlinde, Black holes and strings in two dimensions, in Trieste Spring School on Strings and Quantum Gravity, Trieste Italy, April 1991, pg. 178, the same lectures were given at MGVI, Japan, June 1991 [INSPIRE].
  130. [130]
    G. Mandal, A.M. Sengupta and S.R. Wadia, Classical solutions of two-dimensional string theory, Mod. Phys. Lett. A 6 (1991) 1685 [INSPIRE].
  131. [131]
    S. Elitzur, A. Forge and E. Rabinovici, Some global aspects of string compactifications, Nucl. Phys. B 359 (1991) 581 [INSPIRE].
  132. [132]
    E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].
  133. [133]
    C.G. Callan Jr., S.B. Giddings, J.A. Harvey and A. Strominger, Evanescent black holes, Phys. Rev. D 45 (1992) R1005 [hep-th/9111056] [INSPIRE].ADSMathSciNetGoogle Scholar
  134. [134]
    S. Bonanos, J. Gomis, K. Kamimura and J. Lukierski, Maxwell superalgebra and superparticle in constant gauge badkgrounds, Phys. Rev. Lett. 104 (2010) 090401 [arXiv:0911.5072] [INSPIRE].
  135. [135]
    T.G. Mertens, The Schwarzian theoryorigins, arXiv:1801.09605 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute for Theoretical Physics, TU WienViennaAustria

Personalised recommendations