3d printing of 2d \( \mathcal{N}=\left(0,2\right) \) gauge theories

Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

We introduce 3d printing, a new algorithm for generating 2d \( \mathcal{N}=\left(0,2\right) \) gauge theories on D1-branes probing singular toric Calabi-Yau 4-folds using 4d \( \mathcal{N}=1 \) gauge theories on D3-branes probing toric Calabi-Yau 3-folds as starting points. Equivalently, this method produces brane brick models starting from brane tilings. 3d printing represents a significant improvement with respect to previously available tools, allowing a straightforward determination of gauge theories for geometries that until now could only be tackled using partial resolution. We investigate the interplay between triality, an IR equivalence between different 2d \( \mathcal{N}=\left(0,2\right) \) gauge theories, and the freedom in 3d printing given an underlying Calabi-Yau 4-fold. Finally, we present the first discussion of the consistency and reduction of brane brick models.

Keywords

Brane Dynamics in Gauge Theories D-branes Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Franco, D. Ghim, S. Lee, R.-K. Seong and D. Yokoyama, 2d (0, 2) quiver gauge theories and D-branes, JHEP 09 (2015) 072 [arXiv:1506.03818] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Garcia-Compean and A.M. Uranga, Brane box realization of chiral gauge theories in two-dimensions, Nucl. Phys. B 539 (1999) 329 [hep-th/9806177] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S. Franco, S. Lee and R.-K. Seong, Brane brick models, toric Calabi-Yau 4-folds and 2d (0, 2) quivers, JHEP 02 (2016) 047 [arXiv:1510.01744] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Franco, S. Lee and R.-K. Seong, Brane brick models and 2d (0, 2) triality, JHEP 05 (2016) 020 [arXiv:1602.01834] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Franco, S. Lee, R.-K. Seong and C. Vafa, Brane brick models in the mirror, JHEP 02 (2017) 106 [arXiv:1609.01723] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Franco, Y.-H. He, C. Sun and Y. Xiao, A comprehensive survey of brane tilings, Int. J. Mod. Phys. A 32 (2017) 1750142 [arXiv:1702.03958] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP 03 (2014) 076 [arXiv:1310.0818] [INSPIRE].
  10. [10]
    S. Franco, D. Ghim, S. Lee and R.-K. Seong, Elliptic genera of 2d (0, 2) gauge theories from brane brick models, JHEP 06 (2017) 068 [arXiv:1702.02948] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Franco, S. Lee, R.-K. Seong and C. Vafa, Quadrality for supersymmetric matrix models, JHEP 07 (2017) 053 [arXiv:1612.06859] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    S. Franco and G. Musiker, Higher cluster categories and QFT dualities, arXiv:1711.01270 [INSPIRE].
  13. [13]
    S. Franco, S. Lee and R.-K. Seong, Orbifold reduction and 2d (0, 2) gauge theories, JHEP 03 (2017) 016 [arXiv:1609.07144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    R. Tatar, Geometric constructions of two dimensional (0, 2) SUSY theories, Phys. Rev. D 92 (2015) 045006 [arXiv:1506.05372] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP 07 (2016) 020 [arXiv:1511.09462] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Schäfer-Nameki and T. Weigand, F-theory and 2d (0, 2) theories, JHEP 05 (2016) 059 [arXiv:1601.02015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    F. Apruzzi, F. Hassler, J.J. Heckman and I.V. Melnikov, UV completions for non-critical strings, JHEP 07 (2016) 045 [arXiv:1602.04221] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    F. Apruzzi, F. Hassler, J.J. Heckman and I.V. Melnikov, From 6d SCFTs to dynamic GLSMs, Phys. Rev. D 96 (2017) 066015 [arXiv:1610.00718] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Lawrie, S. Schäfer-Nameki and T. Weigand, Chiral 2d theories from N = 4 SYM with varying coupling, JHEP 04 (2017) 111 [arXiv:1612.05640] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    C. Lawrie, S. Schäfer-Nameki and T. Weigand, The gravitational sector of 2d (0, 2) F-theory vacua, JHEP 05 (2017) 103 [arXiv:1612.06393] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    T. Weigand and F. Xu, The Green-Schwarz mechanism and geometric anomaly relations in 2d (0, 2) F-theory vacua, JHEP 04 (2018) 107 [arXiv:1712.04456] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS 3 /CFT 2, JHEP 08 (2017) 043 [arXiv:1705.04679] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C. Couzens, D. Martelli and S. Schäfer-Nameki, F-theory and AdS 3 /CFT 2 (2, 0), arXiv:1712.07631 [INSPIRE].
  24. [24]
    I. Florakis, I. García-Etxebarria, D. Lüst and D. Regalado, 2d orbifolds with exotic supersymmetry, JHEP 02 (2018) 146 [arXiv:1712.04318] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  25. [25]
    C. Closset, J. Guo and E. Sharpe, B-branes and supersymmetric quivers in 2d, JHEP 02 (2018) 051 [arXiv:1711.10195] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    K. Mohri, D-branes and quotient singularities of Calabi-Yau fourfolds, Nucl. Phys. B 521 (1998) 161 [hep-th/9707012] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
  28. [28]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    R. D’Auria, P. Fré and P. van Nieuwenhuizen, N = 2 matter coupled supergravity from compactification on a coset G/H possessing an additional Killing vector, Phys. Lett. B 136 (1984) 347 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP 08 (2001) 040 [hep-th/0104259] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076 [hep-th/0205144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    F. Cachazo, B. Fiol, K.A. Intriligator, S. Katz and C. Vafa, A geometric unification of dualities, Nucl. Phys. B 628 (2002) 3 [hep-th/0110028] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    S. Franco, A. Hanany, Y.-H. He and P. Kazakopoulos, Duality walls, duality trees and fractional branes, hep-th/0306092 [INSPIRE].
  34. [34]
    S. Franco, Y.-H. He, C. Herzog and J. Walcher, Chaotic duality in string theory, Phys. Rev. D 70 (2004) 046006 [hep-th/0402120] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    N. Broomhead, Dimer models and Calabi-Yau algebras, Mem. Amer. Math. Soc. 215 (2012) 1 [INSPIRE].MathSciNetMATHGoogle Scholar
  36. [36]
    A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    D.R. Gulotta, Properly ordered dimers, R-charges and an efficient inverse algorithm, JHEP 10 (2008) 014 [arXiv:0807.3012] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    A. Ishii and K. Ueda, A note on consistency conditions on dimer models, in Higher dimensional algebraic geometry, RIMS Kôkyûroku Bessatsu, B24, pg. 143, Res. Inst. Math. Sci. (RIMS), Kyoto Japan, (2011).Google Scholar
  39. [39]
    B. Davison, Consistency conditions for brane tilings, J. Alg. 338 (2011) 1.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    R. Bocklandt, Consistency conditions for dimer models, Glasg. Math. J. 54 (2012) 429.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    S. Franco, Bipartite field theories: from D-brane probes to scattering amplitudes, JHEP 11 (2012) 141 [arXiv:1207.0807] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A. Hanany, V. Jejjala, S. Ramgoolam and R.-K. Seong, Consistency and derangements in brane tilings, J. Phys. A 49 (2016) 355401 [arXiv:1512.09013] [INSPIRE].MathSciNetMATHGoogle Scholar
  43. [43]
    J. Davey, A. Hanany and J. Pasukonis, On the classification of brane tilings, JHEP 01 (2010) 078 [arXiv:0909.2868] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    A. Postnikov, Total positivity, Grassmannians and networks, math.CO/0609764 [INSPIRE].
  45. [45]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge U.K., (2016).CrossRefMATHGoogle Scholar
  46. [46]
    C. Closset, S. Franco, J. Guo, A. Hasan and E. Sharpe, work in progress.Google Scholar
  47. [47]
    I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    S. Oppermann, Quivers for silting mutation, Adv. Math. 307 (2017) 684.MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    S. Franco and A. Hasan, work in progress.Google Scholar
  50. [50]
    M. Wijnholt, Large volume perspective on branes at singularities, Adv. Theor. Math. Phys. 7 (2003) 1117 [hep-th/0212021] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    C.P. Herzog, Exceptional collections and del Pezzo gauge theories, JHEP 04 (2004) 069 [hep-th/0310262] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    C.P. Herzog, Seiberg duality is an exceptional mutation, JHEP 08 (2004) 064 [hep-th/0405118] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    P.S. Aspinwall and I.V. Melnikov, D-branes on vanishing del Pezzo surfaces, JHEP 12 (2004) 042 [hep-th/0405134] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    P.S. Aspinwall and S.H. Katz, Computation of superpotentials for D-branes, Commun. Math. Phys. 264 (2006) 227 [hep-th/0412209] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    C.P. Herzog and R.L. Karp, On the geometry of quiver gauge theories (stacking exceptional collections), Adv. Theor. Math. Phys. 13 (2009) 599 [hep-th/0605177] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    V. Niarchos, Seiberg dualities and the 3d/4d connection, JHEP 07 (2012) 075 [arXiv:1205.2086] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities for orthogonal groups, JHEP 08 (2013) 099 [arXiv:1307.0511] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    C. Hwang and P. Yi, Twisted partition functions and H-saddles, JHEP 06 (2017) 045 [arXiv:1704.08285] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    O. Aharony, S.S. Razamat and B. Willett, From 3d duality to 2d duality, JHEP 11 (2017) 090 [arXiv:1710.00926] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    C. Closset, D. Ghim and R.-K. Seong, Supersymmetric gauged matrix models from dimensional reduction on a sphere, arXiv:1712.10023 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Physics DepartmentThe City College of the CUNYNew YorkU.S.A.
  2. 2.The Graduate School and University CenterThe City University of New YorkNew YorkU.S.A.

Personalised recommendations