Early universe with modified scalar-tensor theory of gravity

  • Ranajit Mandal
  • Chandramouli Sarkar
  • Abhik Kumar Sanyal
Open Access
Regular Article - Theoretical Physics


Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.


Cosmology of Theories beyond the SM Conformal and W Symmetry Models of Quantum Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.-P. Uzan, Cosmological scaling solutions of nonminimally coupled scalar fields, Phys. Rev. D 59 (1999) 123510 [gr-qc/9903004] [INSPIRE].
  2. [2]
    L. Amendola, Coupled quintessence, Phys. Rev. D 62 (2000) 043511 [astro-ph/9908023] [INSPIRE].
  3. [3]
    R. Bean and J. Magueijo, Dilaton derived quintessence scenario leading naturally to the late time acceleration of the universe, Phys. Lett. B 517 (2001) 177 [astro-ph/0007199] [INSPIRE].
  4. [4]
    R. Bean, Perturbation evolution with a nonminimally coupled scalar field, Phys. Rev. D 64 (2001) 123516 [astro-ph/0104464] [INSPIRE].
  5. [5]
    B. Boisseau, G. Esposito-Farese, D. Polarski and A.A. Starobinsky, Reconstruction of a scalar tensor theory of gravity in an accelerating universe, Phys. Rev. Lett. 85 (2000) 2236 [gr-qc/0001066] [INSPIRE].
  6. [6]
    N. Agarwal and R. Bean, The Dynamical viability of scalar-tensor gravity theories, Class. Quant. Grav. 25 (2008) 165001 [arXiv:0708.3967] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Cid, G. Leon and Y. Leyva, Intermediate accelerated solutions as generic late-time attractors in a modified Jordan-Brans-Dicke theory, JCAP 02 (2016) 027 [arXiv:1506.00186] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Bartolo and M. Pietroni, Scalar tensor gravity and quintessence, Phys. Rev. D 61 (2000) 023518 [hep-ph/9908521] [INSPIRE].
  9. [9]
    D.J. Holden and D. Wands, Selfsimilar cosmological solutions with a nonminimally coupled scalar field, Phys. Rev. D 61 (2000) 043506 [gr-qc/9908026] [INSPIRE].
  10. [10]
    G. Leon, On the Past Asymptotic Dynamics of Non-minimally Coupled Dark Energy, Class. Quant. Grav. 26 (2009) 035008 [arXiv:0812.1013] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Nozari and S.D. Sadatian, Late-time acceleration and Phantom Divide Line Crossing with Non-minimal Coupling and Lorentz Invariance Violation, Eur. Phys. J. C 58 (2008) 499 [arXiv:0809.4744] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L.N. Granda, Cosmological Dynamics of Scalar Field with Non-Minimal Coupling to Gravity, Rev. Col. Fís. 42 (2010) 63.Google Scholar
  13. [13]
    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    B. Tajahmad and A.K. Sanyal, Unified cosmology with scalar-tensor theory of gravity, Eur. Phys. J. C 77 (2017) 217 [arXiv:1612.04239] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    K.-i. Maeda, Inflation as a Transient Attractor in R 2 Cosmology, Phys. Rev. D 37 (1988) 858 [INSPIRE].ADSGoogle Scholar
  17. [17]
    E.T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Cambridge University Press (1904).Google Scholar
  18. [18]
    P.A.M. Dirac, Generalized Hamiltonian dynamics, Can. J. Math. 2 (1950) 129 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University, New York (1964).Google Scholar
  20. [20]
    G.T. Horowitz, Quantum Cosmology With a Positive Definite Action, Phys. Rev. D 31 (1985) 1169 [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    A.K. Sanyal and B. Modak, Quantum cosmology with a curvature squared action, Phys. Rev. D 63 (2001) 064021 [gr-qc/0107001] [INSPIRE].
  22. [22]
    A.K. Sanyal and B. Modak, Quantum cosmology with R + R 2 gravity, Class. Quant. Grav. 19 (2002) 515 [gr-qc/0107070] [INSPIRE].
  23. [23]
    A.K. Sanyal, Quantum mechanical probability interpretation in the minisuperspace model of higher order gravity theory, Phys. Lett. B 542 (2002) 147 [gr-qc/0205053] [INSPIRE].
  24. [24]
    A.K. Sanyal, Quantum mechanical formulation of quantum cosmology for brane world effective action, gr-qc/0305042 [INSPIRE].
  25. [25]
    A.K. Sanyal, Hamiltonian formulation of curvature squared action, Gen. Rel. Grav. 37 (2005) 1957 [hep-th/0407141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A.K. Sanyal, S. Debnath and S. Ruz, Canonical formulation of curvature squared action in the presence of lapse function, Class. Quant. Grav. 29 (2012) 215007 [arXiv:1108.5869] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Debnath, S. Ruz and A.K. Sanyal, Canonical formulation of scalar curvature squared action in higher dimensions, Phys. Rev. D 90 (2014) 047504 [arXiv:1408.1765] [INSPIRE].ADSGoogle Scholar
  28. [28]
    K. Sarkar, N. Sk, R. Mandal and A.K. Sanyal, Canonical formulation of Pais-Uhlenbeck action and resolving the issue of branched Hamiltonian, Int. J. Geom. Meth. Mod. Phys. 14 (2016) 1750038 [arXiv:1507.03444] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Ruz, R. Mandal, S. Debnath and A.K. Sanyal, Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity, Gen. Rel. Grav. 48 (2016) 86 [arXiv:1409.7197] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    R. Mandal and A. Kumar Sanyal, Equivalent and inequivalent canonical structures of higher order theories of gravity, Phys. Rev. D 96 (2017) 084025 [arXiv:1709.05201] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].ADSGoogle Scholar
  33. [33]
    E. Dyer and K. Hinterbichler, Boundary Terms, Variational Principles and Higher Derivative Modified Gravity, Phys. Rev. D 79 (2009) 024028 [arXiv:0809.4033] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    V. Iyer and R.M. Wald, A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].
  35. [35]
    F. Briscese and E. Elizalde, Black hole entropy in modified gravity models, Phys. Rev. D 77 (2008) 044009 [arXiv:0708.0432] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    J.C. Hwang, Cosmological perturbations in generalized gravity theories: Formulation, Class. Quant. Grav. 7 (1990) 1613 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J.-c. Hwang, Cosmological perturbations in generalized gravity theories: Conformal transformation, Class. Quant. Grav. 14 (1997) 1981 [gr-qc/9605024] [INSPIRE].
  38. [38]
    M. Satoh, S. Kanno and J. Soda, Circular Polarization of Primordial Gravitational Waves in String-inspired Inflationary Cosmology, Phys. Rev. D 77 (2008) 023526 [arXiv:0706.3585] [INSPIRE].ADSGoogle Scholar
  39. [39]
    D.J. Schwarz, C.A. Terrero-Escalante and A.A. Garcia, Higher order corrections to primordial spectra from cosmological inflation, Phys. Lett. B 517 (2001) 243 [astro-ph/0106020] [INSPIRE].
  40. [40]
    S.M. Leach, A.R. Liddle, J. Martin and D.J. Schwarz, Cosmological parameter estimation and the inflationary cosmology, Phys. Rev. D 66 (2002) 023515 [astro-ph/0202094] [INSPIRE].
  41. [41]
    D.J. Schwarz and C.A. Terrero-Escalante, Primordial fluctuations and cosmological inflation after WMAP 1.0, JCAP 08 (2004) 003 [hep-ph/0403129] [INSPIRE].
  42. [42]
    M. Satoh and J. Soda, Higher Curvature Corrections to Primordial Fluctuations in Slow-roll Inflation, JCAP 09 (2008) 019 [arXiv:0806.4594] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.C. Hwang, Curved space quantum scalar field theory with accompanying metric fluctuations, Phys. Rev. D 48 (1993) 3544 [INSPIRE].ADSGoogle Scholar
  44. [44]
    J.C. Hwang, Perturbative semiclassical approximation in the uniform curvature gauge, Class. Quant. Grav. 11 (1994) 2305 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    J.-c. Hwang, Quantum fluctuations of cosmological perturbations in generalized gravity, Class. Quant. Grav. 14 (1997) 3327 [gr-qc/9607059] [INSPIRE].
  46. [46]
    J.-c. Hwang, Unified analysis of cosmological perturbations in generalized gravity, Phys. Rev. D 53 (1996) 762 [gr-qc/9509044] [INSPIRE].
  47. [47]
    J.-c. Hwang and H. Noh, Cosmological perturbations in generalized gravity theories, Phys. Rev. D 54 (1996) 1460 [INSPIRE].ADSGoogle Scholar
  48. [48]
    J.-c. Hwang and H. Noh, Density spectra from pole-like inflations based on generalized gravity theories, Class. Quant. Grav. 15 (1998) 1387.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    H. Noh, Cosmological Perturbations in Generalized Gravity Theories Including Tachyon, in proceedings of 22nd Texas Symposium on Relativistic Astrophysics at Stanford University, December 13-17, 2004.Google Scholar
  50. [50]
    V.F. Mukhanov, Quantum Theory of Gauge Invariant Cosmological Perturbations, Sov. Phys. JETP 67 (1988) 1297 [INSPIRE].MathSciNetGoogle Scholar
  51. [51]
    J. Martin and D.J. Schwarz, New exact solutions for inflationary cosmological perturbations, Phys. Lett. B 500 (2001) 1 [astro-ph/0005542] [INSPIRE].
  52. [52]
    E.D. Stewart and D.H. Lyth, A More accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation, Phys. Lett. B 302 (1993) 171 [gr-qc/9302019] [INSPIRE].
  53. [53]
    T.T. Nakamura and E.D. Stewart, The Spectrum of cosmological perturbations produced by a multicomponent inflaton to second order in the slow roll approximation, Phys. Lett. B 381 (1996) 413 [astro-ph/9604103] [INSPIRE].
  54. [54]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  55. [55]
    F.J. de Urries and J. Julve, Ostrogradski formalism for higher derivative scalar field theories, J. Phys. A 31 (1998) 6949 [hep-th/9802115] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  56. [56]
    L. Querella, Variational principles and cosmological models in higher order gravity, Ph.D. Thesis, Université de Liege (1998) [gr-qc/9902044] [INSPIRE].
  57. [57]
    D.G. Boulware, Quantum Theory of Gravity, S.M. Christensen ed., Adam Hilger Ltd. (1984).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KalyaniNadiaIndia
  2. 2.Department of PhysicsJangipur CollegeMurshidabadIndia

Personalised recommendations