# Early universe with modified scalar-tensor theory of gravity

- 29 Downloads

## Abstract

Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.

## Keywords

Cosmology of Theories beyond the SM Conformal and W Symmetry Models of Quantum Gravity## Notes

**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]J.-P. Uzan,
*Cosmological scaling solutions of nonminimally coupled scalar fields*,*Phys. Rev.***D 59**(1999) 123510 [gr-qc/9903004] [INSPIRE]. - [2]
- [3]R. Bean and J. Magueijo,
*Dilaton derived quintessence scenario leading naturally to the late time acceleration of the universe*,*Phys. Lett.***B 517**(2001) 177 [astro-ph/0007199] [INSPIRE]. - [4]R. Bean,
*Perturbation evolution with a nonminimally coupled scalar field*,*Phys. Rev.***D 64**(2001) 123516 [astro-ph/0104464] [INSPIRE]. - [5]B. Boisseau, G. Esposito-Farese, D. Polarski and A.A. Starobinsky,
*Reconstruction of a scalar tensor theory of gravity in an accelerating universe*,*Phys. Rev. Lett.***85**(2000) 2236 [gr-qc/0001066] [INSPIRE]. - [6]N. Agarwal and R. Bean,
*The Dynamical viability of scalar-tensor gravity theories*,*Class. Quant. Grav.***25**(2008) 165001 [arXiv:0708.3967] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [7]A. Cid, G. Leon and Y. Leyva,
*Intermediate accelerated solutions as generic late-time attractors in a modified Jordan-Brans-Dicke theory*,*JCAP***02**(2016) 027 [arXiv:1506.00186] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [8]N. Bartolo and M. Pietroni,
*Scalar tensor gravity and quintessence*,*Phys. Rev.***D 61**(2000) 023518 [hep-ph/9908521] [INSPIRE]. - [9]D.J. Holden and D. Wands,
*Selfsimilar cosmological solutions with a nonminimally coupled scalar field*,*Phys. Rev.***D 61**(2000) 043506 [gr-qc/9908026] [INSPIRE]. - [10]G. Leon,
*On the Past Asymptotic Dynamics of Non-minimally Coupled Dark Energy*,*Class. Quant. Grav.***26**(2009) 035008 [arXiv:0812.1013] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [11]K. Nozari and S.D. Sadatian,
*Late-time acceleration and Phantom Divide Line Crossing with Non-minimal Coupling and Lorentz Invariance Violation*,*Eur. Phys. J.***C 58**(2008) 499 [arXiv:0809.4744] [INSPIRE].ADSCrossRefGoogle Scholar - [12]L.N. Granda,
*Cosmological Dynamics of Scalar Field with Non-Minimal Coupling to Gravity*,*Rev. Col. Fís.***42**(2010) 63.Google Scholar - [13]K.S. Stelle,
*Renormalization of Higher Derivative Quantum Gravity*,*Phys. Rev.***D 16**(1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar - [14]B. Tajahmad and A.K. Sanyal,
*Unified cosmology with scalar-tensor theory of gravity*,*Eur. Phys. J.***C 77**(2017) 217 [arXiv:1612.04239] [INSPIRE].ADSCrossRefGoogle Scholar - [15]A.A. Starobinsky,
*A New Type of Isotropic Cosmological Models Without Singularity*,*Phys. Lett.***B 91**(1980) 99 [INSPIRE].ADSCrossRefMATHGoogle Scholar - [16]K.-i. Maeda,
*Inflation as a Transient Attractor in R*^{2}*Cosmology*,*Phys. Rev.***D 37**(1988) 858 [INSPIRE].ADSGoogle Scholar - [17]E.T. Whittaker,
*A treatise on the analytical dynamics of particles and rigid bodies*, Cambridge University Press (1904).Google Scholar - [18]P.A.M. Dirac,
*Generalized Hamiltonian dynamics*,*Can. J. Math.***2**(1950) 129 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [19]P.A.M. Dirac,
*Lectures on Quantum Mechanics*, Belfer Graduate School of Science, Yeshiva University, New York (1964).Google Scholar - [20]G.T. Horowitz,
*Quantum Cosmology With a Positive Definite Action*,*Phys. Rev.***D 31**(1985) 1169 [INSPIRE].ADSMathSciNetGoogle Scholar - [21]A.K. Sanyal and B. Modak,
*Quantum cosmology with a curvature squared action*,*Phys. Rev.***D 63**(2001) 064021 [gr-qc/0107001] [INSPIRE]. - [22]A.K. Sanyal and B. Modak,
*Quantum cosmology with R*+*R*^{2}*gravity*,*Class. Quant. Grav.***19**(2002) 515 [gr-qc/0107070] [INSPIRE]. - [23]A.K. Sanyal,
*Quantum mechanical probability interpretation in the minisuperspace model of higher order gravity theory*,*Phys. Lett.***B 542**(2002) 147 [gr-qc/0205053] [INSPIRE]. - [24]A.K. Sanyal,
*Quantum mechanical formulation of quantum cosmology for brane world effective action*, gr-qc/0305042 [INSPIRE]. - [25]A.K. Sanyal,
*Hamiltonian formulation of curvature squared action*,*Gen. Rel. Grav.***37**(2005) 1957 [hep-th/0407141] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [26]A.K. Sanyal, S. Debnath and S. Ruz,
*Canonical formulation of curvature squared action in the presence of lapse function*,*Class. Quant. Grav.***29**(2012) 215007 [arXiv:1108.5869] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [27]S. Debnath, S. Ruz and A.K. Sanyal,
*Canonical formulation of scalar curvature squared action in higher dimensions*,*Phys. Rev.***D 90**(2014) 047504 [arXiv:1408.1765] [INSPIRE].ADSGoogle Scholar - [28]K. Sarkar, N. Sk, R. Mandal and A.K. Sanyal,
*Canonical formulation of Pais-Uhlenbeck action and resolving the issue of branched Hamiltonian*,*Int. J. Geom. Meth. Mod. Phys.***14**(2016) 1750038 [arXiv:1507.03444] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [29]S. Ruz, R. Mandal, S. Debnath and A.K. Sanyal,
*Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity*,*Gen. Rel. Grav.***48**(2016) 86 [arXiv:1409.7197] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [30]R. Mandal and A. Kumar Sanyal,
*Equivalent and inequivalent canonical structures of higher order theories of gravity*,*Phys. Rev.***D 96**(2017) 084025 [arXiv:1709.05201] [INSPIRE].ADSGoogle Scholar - [31]J.W. York Jr.,
*Role of conformal three geometry in the dynamics of gravitation*,*Phys. Rev. Lett.***28**(1972) 1082 [INSPIRE].ADSCrossRefGoogle Scholar - [32]G.W. Gibbons and S.W. Hawking,
*Action Integrals and Partition Functions in Quantum Gravity*,*Phys. Rev.***D 15**(1977) 2752 [INSPIRE].ADSGoogle Scholar - [33]E. Dyer and K. Hinterbichler,
*Boundary Terms, Variational Principles and Higher Derivative Modified Gravity*,*Phys. Rev.***D 79**(2009) 024028 [arXiv:0809.4033] [INSPIRE].ADSMathSciNetMATHGoogle Scholar - [34]V. Iyer and R.M. Wald,
*A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes*,*Phys. Rev.***D 52**(1995) 4430 [gr-qc/9503052] [INSPIRE]. - [35]F. Briscese and E. Elizalde,
*Black hole entropy in modified gravity models*,*Phys. Rev.***D 77**(2008) 044009 [arXiv:0708.0432] [INSPIRE].ADSMathSciNetGoogle Scholar - [36]J.C. Hwang,
*Cosmological perturbations in generalized gravity theories: Formulation*,*Class. Quant. Grav.***7**(1990) 1613 [INSPIRE].ADSCrossRefGoogle Scholar - [37]J.-c. Hwang,
*Cosmological perturbations in generalized gravity theories: Conformal transformation*,*Class. Quant. Grav.***14**(1997) 1981 [gr-qc/9605024] [INSPIRE]. - [38]M. Satoh, S. Kanno and J. Soda,
*Circular Polarization of Primordial Gravitational Waves in String-inspired Inflationary Cosmology*,*Phys. Rev.***D 77**(2008) 023526 [arXiv:0706.3585] [INSPIRE].ADSGoogle Scholar - [39]D.J. Schwarz, C.A. Terrero-Escalante and A.A. Garcia,
*Higher order corrections to primordial spectra from cosmological inflation*,*Phys. Lett.***B 517**(2001) 243 [astro-ph/0106020] [INSPIRE]. - [40]S.M. Leach, A.R. Liddle, J. Martin and D.J. Schwarz,
*Cosmological parameter estimation and the inflationary cosmology*,*Phys. Rev.***D 66**(2002) 023515 [astro-ph/0202094] [INSPIRE]. - [41]D.J. Schwarz and C.A. Terrero-Escalante,
*Primordial fluctuations and cosmological inflation after WMAP 1.0*,*JCAP***08**(2004) 003 [hep-ph/0403129] [INSPIRE]. - [42]M. Satoh and J. Soda,
*Higher Curvature Corrections to Primordial Fluctuations in Slow-roll Inflation*,*JCAP***09**(2008) 019 [arXiv:0806.4594] [INSPIRE].ADSCrossRefGoogle Scholar - [43]J.C. Hwang,
*Curved space quantum scalar field theory with accompanying metric fluctuations*,*Phys. Rev.***D 48**(1993) 3544 [INSPIRE].ADSGoogle Scholar - [44]J.C. Hwang,
*Perturbative semiclassical approximation in the uniform curvature gauge*,*Class. Quant. Grav.***11**(1994) 2305 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [45]J.-c. Hwang,
*Quantum fluctuations of cosmological perturbations in generalized gravity*,*Class. Quant. Grav.***14**(1997) 3327 [gr-qc/9607059] [INSPIRE]. - [46]J.-c. Hwang,
*Unified analysis of cosmological perturbations in generalized gravity*,*Phys. Rev.***D 53**(1996) 762 [gr-qc/9509044] [INSPIRE]. - [47]J.-c. Hwang and H. Noh,
*Cosmological perturbations in generalized gravity theories*,*Phys. Rev.***D 54**(1996) 1460 [INSPIRE].ADSGoogle Scholar - [48]J.-c. Hwang and H. Noh,
*Density spectra from pole-like inflations based on generalized gravity theories*,*Class. Quant. Grav.***15**(1998) 1387.ADSMathSciNetCrossRefMATHGoogle Scholar - [49]H. Noh,
*Cosmological Perturbations in Generalized Gravity Theories Including Tachyon*, in proceedings of*22nd Texas Symposium on Relativistic Astrophysics at Stanford University*, December 13-17, 2004.Google Scholar - [50]V.F. Mukhanov,
*Quantum Theory of Gauge Invariant Cosmological Perturbations*,*Sov. Phys. JETP***67**(1988) 1297 [INSPIRE].MathSciNetGoogle Scholar - [51]J. Martin and D.J. Schwarz,
*New exact solutions for inflationary cosmological perturbations*,*Phys. Lett.***B 500**(2001) 1 [astro-ph/0005542] [INSPIRE]. - [52]E.D. Stewart and D.H. Lyth,
*A More accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation*,*Phys. Lett.***B 302**(1993) 171 [gr-qc/9302019] [INSPIRE]. - [53]T.T. Nakamura and E.D. Stewart,
*The Spectrum of cosmological perturbations produced by a multicomponent inflaton to second order in the slow roll approximation*,*Phys. Lett.***B 381**(1996) 413 [astro-ph/9604103] [INSPIRE]. - [54]Planck collaboration, P.A.R. Ade et al.,
*Planck 2015 results. XX. Constraints on inflation*,*Astron. Astrophys.***594**(2016) A20 [arXiv:1502.02114] [INSPIRE]. - [55]F.J. de Urries and J. Julve,
*Ostrogradski formalism for higher derivative scalar field theories*,*J. Phys.***A 31**(1998) 6949 [hep-th/9802115] [INSPIRE].ADSMathSciNetMATHGoogle Scholar - [56]L. Querella,
*Variational principles and cosmological models in higher order gravity*, Ph.D. Thesis, Université de Liege (1998) [gr-qc/9902044] [INSPIRE]. - [57]D.G. Boulware,
*Quantum Theory of Gravity*, S.M. Christensen ed., Adam Hilger Ltd. (1984).Google Scholar