# A minimal approach to the scattering of physical massless bosons

- 8 Downloads

## Abstract

Tree and loop level scattering amplitudes which involve physical massless bosons are derived directly from physical constraints such as locality, symmetry and unitarity, bypassing path integral constructions. Amplitudes can be projected onto a minimal basis of kinematic factors through linear algebra, by employing four dimensional spinor helicity methods or at its most general using projection techniques. The linear algebra analysis is closely related to amplitude relations, especially the Bern-Carrasco-Johansson relations for gluon amplitudes and the Kawai-Lewellen-Tye relations between gluons and graviton amplitudes. Projection techniques are known to reduce the computation of loop amplitudes with spinning particles to scalar integrals. Unitarity, locality and integration-by-parts identities can then be used to fix complete tree and loop amplitudes efficiently. The loop amplitudes follow algorithmically from the trees. A number of proof-of-concept examples are presented. These include the planar four point two-loop amplitude in pure Yang-Mills theory as well as a range of one loop amplitudes with internal and external scalars, gluons and gravitons. Several interesting features of the results are highlighted, such as the vanishing of certain basis coefficients for gluon and graviton amplitudes. Effective field theories are naturally and efficiently included into the framework. Dimensional regularisation is employed throughout; different regularisation schemes are worked out explicitly. The presented methods appear most powerful in non-supersymmetric theories in cases with relatively few legs, but with potentially many loops. For instance, in the introduced approach iterated unitarity cuts of four point amplitudes for non-supersymmetric gauge and gravity theories can be computed by matrix multiplication, generalising the so-called rung-rule of maximally supersymmetric theories. The philosophy of the approach to kinematics also leads to a technique to control colour quantum numbers of scattering amplitudes with matter, especially efficient in the adjoint and fundamental representations.

## Keywords

Scattering Amplitudes Space-Time Symmetries## Notes

**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## Supplementary material

## References

- [1]
- [2]J.M. Henn and J.C. Plefka,
*Scattering amplitudes in gauge theories*,*Lect. Notes Phys.***883**(2014) 1 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [3]S.J. Parke and T.R. Taylor,
*An amplitude for n gluon scattering*,*Phys. Rev. Lett.***56**(1986) 2459 [INSPIRE].ADSCrossRefGoogle Scholar - [4]S. Dittmaier,
*Weyl-van der Waerden formalism for helicity amplitudes of massive particles*,*Phys. Rev.***D 59**(1998) 016007 [hep-ph/9805445] [INSPIRE]. - [5]C. Cheung and D. O’Connell,
*Amplitudes and spinor-helicity in six dimensions*,*JHEP***07**(2009) 075 [arXiv:0902.0981] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [6]R.H. Boels and D. O’Connell,
*Simple superamplitudes in higher dimensions*,*JHEP***06**(2012) 163 [arXiv:1201.2653] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [7]N. Arkani-Hamed, T.-C. Huang and Y.-T. Huang,
*Scattering amplitudes for all masses and spins*, arXiv:1709.04891 [INSPIRE]. - [8]Z. Bern and D.A. Kosower,
*The computation of loop amplitudes in gauge theories*,*Nucl. Phys.***B 379**(1992) 451 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [9]E.W.N. Glover and M.E. Tejeda-Yeomans,
*Two loop QCD helicity amplitudes for massless quark massless gauge boson scattering*,*JHEP***06**(2003) 033 [hep-ph/0304169] [INSPIRE]. - [10]T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis,
*Two-loop QCD corrections to the helicity amplitudes for H*→ 3*partons*,*JHEP***02**(2012) 056 [arXiv:1112.3554] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [11]M.E. Peskin and D.V. Schroeder,
*An introduction to quantum field theory*, Addison-Wesley, Reading U.S.A., (1995) [INSPIRE].Google Scholar - [12]R. Kleiss and H. Kuijf,
*Multi-gluon cross-sections and five jet production at hadron colliders*,*Nucl. Phys.***B 312**(1989) 616 [INSPIRE].ADSCrossRefGoogle Scholar - [13]Z. Bern, J.J.M. Carrasco and H. Johansson,
*New relations for gauge-theory amplitudes*,*Phys. Rev.***D 78**(2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar - [14]N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove,
*Minimal basis for gauge theory amplitudes*,*Phys. Rev. Lett.***103**(2009) 161602 [arXiv:0907.1425] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [15]
- [16]B. Feng, R. Huang and Y. Jia,
*Gauge amplitude identities by on-shell recursion relation in S-matrix program*,*Phys. Lett.***B 695**(2011) 350 [arXiv:1004.3417] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [17]H. Kawai, D.C. Lewellen and S.-H. Henry Tye,
*A relation between tree amplitudes of closed and open strings*,*Nucl. Phys.***B 269**(1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [18]D. Lancaster and P. Mansfield,
*Relations between disk diagrams*,*Phys. Lett.***B 217**(1989) 416 [INSPIRE].ADSCrossRefGoogle Scholar - [19]S. Stieberger and T.R. Taylor,
*New relations for Einstein-Yang-Mills amplitudes*,*Nucl. Phys.***B 913**(2016) 151 [arXiv:1606.09616] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [20]Y.-J. Du, B. Feng and F. Teng,
*Expansion of all multitrace tree level EYM amplitudes*,*JHEP***12**(2017) 038 [arXiv:1708.04514] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [21]L.A. Barreiro and R. Medina,
*RNS derivation of N-point disk amplitudes from the revisited S-matrix approach*,*Nucl. Phys.***B 886**(2014) 870 [arXiv:1310.5942] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [22]R.H. Boels and R. Medina,
*Graviton and gluon scattering from first principles*,*Phys. Rev. Lett.***118**(2017) 061602 [arXiv:1607.08246] [INSPIRE].CrossRefGoogle Scholar - [23]Z. Bern, J.J.M. Carrasco and H. Johansson,
*Perturbative quantum gravity as a double copy of gauge theory*,*Phys. Rev. Lett.***105**(2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [24]Z. Bern, J.J. Carrasco, W.-M. Chen, H. Johansson and R. Roiban,
*Gravity amplitudes as generalized double copies of gauge-theory amplitudes*,*Phys. Rev. Lett.***118**(2017) 181602 [arXiv:1701.02519] [INSPIRE].ADSCrossRefGoogle Scholar - [25]R. Britto, F. Cachazo and B. Feng,
*New recursion relations for tree amplitudes of gluons*,*Nucl. Phys.***B 715**(2005) 499 [hep-th/0412308] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [26]R. Britto, F. Cachazo, B. Feng and E. Witten,
*Direct proof of tree-level recursion relation in Yang-Mills theory*,*Phys. Rev. Lett.***94**(2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [27]N. Arkani-Hamed and J. Kaplan,
*On tree amplitudes in gauge theory and gravity*,*JHEP***04**(2008) 076 [arXiv:0801.2385] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [28]Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower,
*Fusing gauge theory tree amplitudes into loop amplitudes*,*Nucl. Phys.***B 435**(1995) 59 [hep-ph/9409265] [INSPIRE]. - [29]N. Arkani-Hamed, L. Rodina and J. Trnka,
*Locality and unitarity from singularities and gauge invariance*, arXiv:1612.02797 [INSPIRE]. - [30]
- [31]S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng,
*Two-loop four-gluon amplitudes from numerical unitarity*,*Phys. Rev. Lett.***119**(2017) 142001 [arXiv:1703.05273] [INSPIRE].ADSCrossRefGoogle Scholar - [32]Z. Bern, A. Edison, D. Kosower and J. Parra-Martinez,
*Curvature-squared multiplets, evanescent effects and the*U(1)*anomaly in N*= 4*supergravity*,*Phys. Rev.***D 96**(2017) 066004 [arXiv:1706.01486] [INSPIRE].ADSGoogle Scholar - [33]E.P. Wigner,
*On unitary representations of the inhomogeneous Lorentz group*,*Annals Math.***40**(1939) 149 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [34]S.R. Coleman and J. Mandula,
*All possible symmetries of the S matrix*,*Phys. Rev.***159**(1967) 1251 [INSPIRE].ADSCrossRefMATHGoogle Scholar - [35]
- [36]F. Bartelmann,
*Scattering amplitudes from first principles: parity-odd and fermionic case*, master’s thesis, Universität Hamburg, Hamburg Germany, (2017).Google Scholar - [37]
- [38]R.H. Boels,
*Three particle superstring amplitudes with massive legs*,*JHEP***06**(2012) 026 [arXiv:1201.2655] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [39]P.C. Schuster and N. Toro,
*Constructing the tree-level Yang-Mills S-matrix using complex factorization*,*JHEP***06**(2009) 079 [arXiv:0811.3207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [40]R.H. Boels,
*On the field theory expansion of superstring five point amplitudes*,*Nucl. Phys.***B 876**(2013) 215 [arXiv:1304.7918] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [41]P. Kravchuk and D. Simmons-Duffin,
*Counting conformal correlators*,*JHEP***02**(2018) 096 [arXiv:1612.08987] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [42]R. van Damme and G. ’t Hooft,
*Breakdown of unitarity in the dimensional reduction scheme*,*Phys. Lett.***B 150**(1985) 133 [INSPIRE]. - [43]I. Jack, D.R.T. Jones and K.L. Roberts,
*Dimensional reduction in nonsupersymmetric theories*,*Z. Phys.***C 62**(1994) 161 [hep-ph/9310301] [INSPIRE]. - [44]R.E. Cutkosky,
*Singularities and discontinuities of Feynman amplitudes*,*J. Math. Phys.***1**(1960) 429 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [45]R.N. Lee,
*LiteRed*1*.*4*: a powerful tool for reduction of multiloop integrals*,*J. Phys. Conf. Ser.***523**(2014) 012059 [arXiv:1310.1145] [INSPIRE]. - [46]
- [47]S. Badger, C. Brønnum-Hansen, F. Buciuni and D. O’Connell,
*A unitarity compatible approach to one-loop amplitudes with massive fermions*,*JHEP***06**(2017) 141 [arXiv:1703.05734] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [48]R.H. Boels, Q. Jin and H. Lüo,
*Efficient integrand reduction for particles with spin*, arXiv:1802.06761 [INSPIRE]. - [49]R. Britto, F. Cachazo and B. Feng,
*Generalized unitarity and one-loop amplitudes in N*= 4*super-Yang-Mills*,*Nucl. Phys.***B 725**(2005) 275 [hep-th/0412103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [50]V.A. Smirnov,
*Evaluating Feynman integrals*,*Springer Tracts Mod. Phys.***211**(2004) 1 [INSPIRE].MathSciNetMATHGoogle Scholar - [51]V. Del Duca, L.J. Dixon and F. Maltoni,
*New color decompositions for gauge amplitudes at tree and loop level*,*Nucl. Phys.***B 571**(2000) 51 [hep-ph/9910563] [INSPIRE]. - [52]K.J. Larsen and Y. Zhang,
*Integration-by-parts reductions from unitarity cuts and algebraic geometry*,*Phys. Rev.***D 93**(2016) 041701 [arXiv:1511.01071] [INSPIRE].ADSMathSciNetGoogle Scholar - [53]H. Ita,
*Two-loop integrand decomposition into master integrals and surface terms*,*Phys. Rev.***D 94**(2016) 116015 [arXiv:1510.05626] [INSPIRE].ADSMathSciNetGoogle Scholar - [54]A. Georgoudis, K.J. Larsen and Y. Zhang,
*Azurite: an algebraic geometry based package for finding bases of loop integrals*,*Comput. Phys. Commun.***221**(2017) 203 [arXiv:1612.04252] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [55]A.V. Smirnov,
*FIRE*5*: a C++ implementation of Feynman Integral REduction*,*Comput. Phys. Commun.***189**(2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [56]A. von Manteuffel and C. Studerus,
*Reduze*2*— distributed Feynman integral reduction*, arXiv:1201.4330 [INSPIRE]. - [57]N.E.J. Bjerrum-Bohr, D.C. Dunbar and W.B. Perkins,
*Analytic structure of three-mass triangle coefficients*,*JHEP***04**(2008) 038 [arXiv:0709.2086] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [58]Z. Bern and A.G. Morgan,
*Massive loop amplitudes from unitarity*,*Nucl. Phys.***B 467**(1996) 479 [hep-ph/9511336] [INSPIRE]. - [59]R.H. Boels, B.A. Kniehl and G. Yang,
*On a four-loop form factor in N*= 4, PoS(LL2016)039 [arXiv:1607.00172] [INSPIRE]. - [60]O.V. Tarasov,
*Connection between Feynman integrals having different values of the space-time dimension*,*Phys. Rev.***D 54**(1996) 6479 [hep-th/9606018] [INSPIRE].ADSMathSciNetMATHGoogle Scholar - [61]N.E.J. Bjerrum-Bohr, P.H. Damgaard, H. Johansson and T. Sondergaard,
*Monodromy-like relations for finite loop amplitudes*,*JHEP***05**(2011) 039 [arXiv:1103.6190] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [62]L.J. Dixon,
*Calculating scattering amplitudes efficiently*, in*QCD and beyond. Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI-*95, Boulder U.S.A., 4–30 June 1995, pg. 539 [hep-ph/9601359] [INSPIRE]. - [63]L.V. Bork, D.I. Kazakov, M.V. Kompaniets, D.M. Tolkachev and D.E. Vlasenko,
*Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions*,*JHEP***11**(2015) 059 [arXiv:1508.05570] [INSPIRE].MathSciNetCrossRefGoogle Scholar - [64]D.C. Dunbar and P.S. Norridge,
*Calculation of graviton scattering amplitudes using string based methods*,*Nucl. Phys.***B 433**(1995) 181 [hep-th/9408014] [INSPIRE].ADSCrossRefGoogle Scholar - [65]S. Weinberg,
*Infrared photons and gravitons*,*Phys. Rev.***140**(1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [66]Z. Bern, A. De Freitas and L.J. Dixon,
*Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory*,*JHEP***03**(2002) 018 [hep-ph/0201161] [INSPIRE]. - [67]Z. Bern, L.J. Dixon and D.A. Kosower,
*A two loop four gluon helicity amplitude in QCD*,*JHEP***01**(2000) 027 [hep-ph/0001001] [INSPIRE]. - [68]S.G. Naculich,
*All-loop group-theory constraints for color-ordered*SU(*N*)*gauge-theory amplitudes*,*Phys. Lett.***B 707**(2012) 191 [arXiv:1110.1859] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [69]A.C. Edison and S.G. Naculich,
*Symmetric-group decomposition of*SU(*N*)*group-theory constraints on four-, five- and six-point color-ordered amplitudes*,*JHEP***09**(2012) 069 [arXiv:1207.5511] [INSPIRE].ADSCrossRefGoogle Scholar - [70]T. Reichenbächer,
*Relations among color-ordered gauge theory scattering amplitudes at higher loop-order*, master’s thesis, Universität Hamburg, Hamburg Germany, (2013).Google Scholar - [71]A. Ochirov and B. Page,
*Full colour for loop amplitudes in Yang-Mills theory*,*JHEP***02**(2017) 100 [arXiv:1612.04366] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [72]T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren,
*Group theory factors for Feynman diagrams*,*Int. J. Mod. Phys.***A 14**(1999) 41 [hep-ph/9802376] [INSPIRE]. - [73]R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang,
*Color-kinematic duality for form factors*,*JHEP***02**(2013) 063 [arXiv:1211.7028] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [74]F. Cachazo, S. He and E.Y. Yuan,
*Scattering of massless particles in arbitrary dimensions*,*Phys. Rev. Lett.***113**(2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar - [75]R. Roiban and A.A. Tseytlin,
*On four-point interactions in massless higher spin theory in flat space*,*JHEP***04**(2017) 139 [arXiv:1701.05773] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar