Surface operators in 5d gauge theories and duality relations

  • S. K. Ashok
  • M. Billò
  • E. Dell’Aquila
  • M. Frau
  • V. Gupta
  • R. R. John
  • A. Lerda
Open Access
Regular Article - Theoretical Physics
  • 7 Downloads

Abstract

We study half-BPS surface operators in 5d \( \mathcal{N} \) = 1 gauge theories compactified on a circle. Using localization methods and the twisted chiral ring relations of coupled 3d/5d quiver gauge theories, we calculate the twisted chiral superpotential that governs the infrared properties of these surface operators. We make a detailed analysis of the localization integrand, and by comparing with the results from the twisted chiral ring equations, we obtain constraints on the 3d and 5d Chern-Simons levels so that the instanton partition function does not depend on the choice of integration contour. For these values of the Chern-Simons couplings, we comment on how the distinct quiver theories that realize the same surface operator are related to each other by Aharony-Seiberg dualities.

Keywords

Supersymmetric Gauge Theory Chern-Simons Theories Nonperturbative Effects Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE].
  2. [2]
    S. Gukov and E. Witten, Rigid surface operators, Adv. Theor. Math. Phys. 14 (2010) 87 [arXiv:0804.1561] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S. Gukov, Surface operators, arXiv:1412.7127.
  4. [4]
    D. Gaiotto, Surface operators in N = 2 4d gauge theories, JHEP 11 (2012) 090 [arXiv:0911.1316] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    L.F. Alday et al., Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Taki, On AGT conjecture for pure super Yang-Mills and W-algebra, JHEP 05 (2011) 038 [arXiv:0912.4789] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    L.F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4d gauge theories, Lett. Math. Phys. 94 (2010) 87 [arXiv:1005.4469] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    C. Kozcaz, S. Pasquetti, F. Passerini and N. Wyllard, Affine sl(N ) conformal blocks from N = 2 SU(N) gauge theories, JHEP 01 (2011) 045 [arXiv:1008.1412] [INSPIRE].
  9. [9]
    A. Marshakov, A. Mironov and A. Morozov, On AGT relations with surface operator insertion and stationary limit of beta-ensembles, J. Geom. Phys. 61 (2011) 1203 [arXiv:1011.4491] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    C. Kozcaz, S. Pasquetti and N. Wyllard, A&B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    K. Maruyoshi and M. Taki, Deformed prepotential, quantum integrable system and Liouville field theory, Nucl. Phys. B 841 (2010) 388 [arXiv:1006.4505] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    M. Taki, Surface operator, bubbling Calabi-Yau and AGT relation, JHEP 07 (2011) 047 [arXiv:1007.2524] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    H. Awata et al., Localization with a surface operator, irregular conformal blocks and open topological string, Adv. Theor. Math. Phys. 16 (2012) 725 [arXiv:1008.0574] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    N. Wyllard, Instanton partition functions in N = 2 SU(N ) gauge theories with a general surface operator and their W-algebra duals, JHEP 02 (2011) 114 [arXiv:1012.1355] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    N. Wyllard, W-algebras and surface operators in N = 2 gauge theories, J. Phys. A 44 (2011) 155401 [arXiv:1011.0289] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  17. [17]
    H. Kanno and Y. Tachikawa, Instanton counting with a surface operator and the chain-saw quiver, JHEP 06 (2011) 119 [arXiv:1105.0357] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    D. Gaiotto, S. Gukov and N. Seiberg, Surface defects and resolvents, JHEP 09 (2013) 070 [arXiv:1307.2578] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Bullimore, H.-C. Kim and P. Koroteev, Defects and quantum Seiberg-Witten geometry, JHEP 05 (2015) 095 [arXiv:1412.6081] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    S. Nawata, Givental J-functions, quantum integrable systems, AGT relation with surface operator, Adv. Theor. Math. Phys. 19 (2015) 1277 [arXiv:1408.4132] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    J. Gomis and B. Le Floch, M 2-brane surface operators and gauge theory dualities in Toda, JHEP 04 (2016) 183 [arXiv:1407.1852] [INSPIRE].ADSGoogle Scholar
  22. [22]
    E. Frenkel, S. Gukov and J. Teschner, Surface operators and separation of variables, JHEP 01 (2016) 179 [arXiv:1506.07508] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    B. Assel and S. Schäfer-Nameki, Six-dimensional origin of \( \mathcal{N} \) = 4 SYM with duality defects, JHEP 12 (2016) 058 [arXiv:1610.03663] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    J. Gomis, B. Le Floch, Y. Pan and W. Peelaers, Intersecting surface defects and two-dimensional CFT, Phys. Rev. D 96 (2017) 045003 [arXiv:1610.03501] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Y. Pan and W. Peelaers, Intersecting surface defects and instanton partition functions, JHEP 07 (2017) 073 [arXiv:1612.04839] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    S.K. Ashok et al., Modular and duality properties of surface operators in N = 2 gauge theories, JHEP 07 (2017) 068 [arXiv:1702.02833] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Gorsky et al., Surface defects and instanton-vortex interaction, Nucl. Phys. B 920 (2017) 122 [arXiv:1702.03330] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    S.K. Ashok et al., Surface operators, chiral rings and localization in \( \mathcal{N} \) = 2 gauge theories, JHEP 11 (2017) 137 [arXiv:1707.08922] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    N. Nekrasov, BPS/CFT correspondence IV: σ-models and defects in gauge theory, arXiv:1711.11011 [INSPIRE].
  30. [30]
    N. Nekrasov, BPS/CFT correspondence V: BPZ and KZ equations from qq-characters, arXiv:1711.11582 [INSPIRE].
  31. [31]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    F. Benini, D.S. Park and P. Zhao, Cluster algebras from dualities of 2d \( \mathcal{N} \) = (2, 2) quiver gauge theories, Commun. Math. Phys. 340 (2015) 47 [arXiv:1406.2699] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    C. Closset, S. Cremonesi and D.S. Park, The equivariant A-twist and gauged linear σ-models on the two-sphere, JHEP 06 (2015) 076 [arXiv:1504.06308] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    O. Aharony, IR duality in d = 3 N = 2 supersymmetric U Sp(2N c) and U (N c) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].
  37. [37]
    O. Aharony and D. Fleischer, IR dualities in general 3D supersymmetric SU(N ) QCD theories, JHEP 02 (2015) 162 [arXiv:1411.5475] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    Y. Tachikawa, Five-dimensional Chern-Simons terms and Nekrasov’s instanton counting, JHEP 02 (2004) 050 [hep-th/0401184] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim superconformal index with enhanced en global symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal index, JHEP 01 (2014) 079 [arXiv:1310.2150] [INSPIRE].
  41. [41]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-brane webs, symmetry enhancement and duality in 5D supersymmetric gauge theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].
  42. [42]
    M. Taki, Notes on enhancement of flavor symmetry and 5d superconformal index, arXiv:1310.7509 [INSPIRE].
  43. [43]
    M. Taki, Seiberg duality, 5d SCFTs and Nekrasov partition functions, arXiv:1401.7200 [INSPIRE].
  44. [44]
    C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07 (2015) 063 [arXiv:1406.6793] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    L.C. Jeffrey and F.C. Kirwan, Surface operators and separation of variables, Topology 34 (1995) 291.MathSciNetCrossRefGoogle Scholar
  46. [46]
    A.J. Niemi and G.W. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    A.N. Redlich, Gauge noninvariance and parity violation of three-dimensional fermions, Phys. Rev. Lett. 52 (1984) 18 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    A.N. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards classification of 5d SCFTs: single gauge node, arXiv:1705.05836 [INSPIRE].
  52. [52]
    P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On geometric classification of 5d SCFTs, arXiv:1801.04036 [INSPIRE].
  53. [53]
    T.J. Hollowood, A. Iqbal and C. Vafa, Matrix models, geometric engineering and elliptic genera, JHEP 03 (2008) 069 [hep-th/0310272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    M. Billó et al., Non-perturbative gauge/gravity correspondence in N = 2 theories, JHEP 08 (2012) 166 [arXiv:1206.3914] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  56. [56]
    N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    A. Hanany, P. Kazakopoulos and B. Wecht, A new infinite class of quiver gauge theories, JHEP 08 (2005) 054 [hep-th/0503177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    A. Brini and A. Tanzini, Exact results for topological strings on resolved Y**p,q singularities, Commun. Math. Phys. 289 (2009) 205 [arXiv:0804.2598] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
  62. [62]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    A. Brandhuber et al., On the M-theory approach to (compactified) 5 − D field theories, Phys. Lett. B 415 (1997) 127 [hep-th/9709010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    M. Wijnholt, Five-dimensional gauge theories and unitary matrix models, hep-th/0401025 [INSPIRE].
  65. [65]
    F. Cachazo, M.R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies in supersymmetric gauge theory, JHEP 12 (2002) 071 [hep-th/0211170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p, q)-five-brane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  67. [67]
    O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP 10 (1999) 036 [hep-th/9908075] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  68. [68]
    A. Hanany and K. Hori, Branes and N = 2 theories in two-dimensions, Nucl. Phys. B 513 (1998) 119 [hep-th/9707192] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    H.-Y. Chen, T.J. Hollowood and P. Zhao, A 5d/3d duality from relativistic integrable system, JHEP 07 (2012) 139 [arXiv:1205.4230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  71. [71]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, in the proceedings of the 16th International Congress on Mathematical Physics (ICMP09), August 3-8, Prague, Czech Republic, August (2009), arXiv:0908.4052 [INSPIRE].
  72. [72]
    U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A.S. Losev, A. Marshakov and N.A. Nekrasov, Small instantons, little strings and free fermions, hep-th/0302191 [INSPIRE].
  74. [74]
    R. Flume, F. Fucito, J.F. Morales and R. Poghossian, Matone’s relation in the presence of gravitational couplings, JHEP 04 (2004) 008 [hep-th/0403057] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    S.K. Ashok et al., Chiral observables and S-duality in N = 2 U(N ) gauge theories, JHEP 11 (2016) 020 [arXiv:1607.08327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • S. K. Ashok
    • 1
  • M. Billò
    • 2
    • 3
  • E. Dell’Aquila
    • 1
  • M. Frau
    • 2
    • 3
  • V. Gupta
    • 1
  • R. R. John
    • 2
    • 3
  • A. Lerda
    • 4
    • 3
  1. 1.Institute of Mathematical SciencesHomi Bhabha National Institute (HBNI)ChennaiIndia
  2. 2.Università di Torino, Dipartimento di FisicaTorinoItaly
  3. 3.Arnold-Regge Center and INFN — Sezione di TorinoTorinoItaly
  4. 4.Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione TecnologicaAlessandriaItaly

Personalised recommendations