Advertisement

A 750 GeV diphoton signal from a very light pseudoscalar in the NMSSM

  • Ulrich Ellwanger
  • Cyril Hugonie
Open Access
Regular Article - Theoretical Physics

Abstract

The excess of events in the diphoton final state near 750 GeV observed by ATLAS and CMS can be explained within the NMSSM near the R-symmetry limit. Both scalars beyond the Standard Model Higgs boson have masses near 750 GeV, mix strongly, and share sizeable production cross sections in association with b-quarks as well as branching fractions into a pair of very light pseudoscalars. Pseudoscalars with a mass of ∼ 210 MeV decay into collimated diphotons, whereas pseudoscalars with a mass of ∼ 500–550 MeV can decay either into collimated diphotons or into three π 0 resulting in collimated photon jets. Various such scenarios are discussed; the dominant constraints on the latter scenario originate from bounds on radiative Y decays, but they allow for a signal cross section up to 6.7 fb times the acceptance for collimated multiphotons to pass as a single photon.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081.
  2. [2]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004.
  3. [3]
    ATLAS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 032004 [arXiv:1504.05511] [INSPIRE].
  4. [4]
    CMS collaboration, Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 750 (2015) 494 [arXiv:1506.02301] [INSPIRE].
  5. [5]
    S. Knapen, T. Melia, M. Papucci and K. Zurek, Rays of light from the LHC, Phys. Rev. D 93 (2016) 075020 [arXiv:1512.04928] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R. Franceschini et al., What is the γγ resonance at 750 GeV?, JHEP 03 (2016) 144 [arXiv:1512.04933] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Ellis, S.A.R. Ellis, J. Quevillon, V. Sanz and T. You, On the Interpretation of a Possible ∼ 750 GeV Particle Decaying into γγ, JHEP 03 (2016) 176 [arXiv:1512.05327] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B. Bellazzini, R. Franceschini, F. Sala and J. Serra, Goldstones in Diphotons, JHEP 04 (2016) 072 [arXiv:1512.05330] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Falkowski, O. Slone and T. Volansky, Phenomenology of a 750 GeV Singlet, JHEP 02 (2016) 152 [arXiv:1512.05777] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Angelescu, A. Djouadi and G. Moreau, Scenarii for interpretations of the LHC diphoton excess: two Higgs doublets and vector-like quarks and leptons, Phys. Lett. B 756 (2016) 126 [arXiv:1512.04921] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Bečirevič, E. Bertuzzo, O. Sumensari and R. Zukanovich Funchal, Can the new resonance at LHC be a CP-Odd Higgs boson?, Phys. Lett. B 757 (2016) 261 [arXiv:1512.05623] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    X.-F. Han and L. Wang, Implication of the 750 GeV diphoton resonance on two-Higgs-doublet model and its extensions with Higgs field, Phys. Rev. D 93 (2016) 055027 [arXiv:1512.06587] [INSPIRE].ADSGoogle Scholar
  13. [13]
    W.-C. Huang, Y.-L.S. Tsai and T.-C. Yuan, Gauged Two Higgs Doublet Model confronts the LHC 750 GeV di-photon anomaly, arXiv:1512.07268 [INSPIRE].
  14. [14]
    S. Moretti and K. Yagyu, 750 GeV diphoton excess and its explanation in two-Higgs-doublet models with a real inert scalar multiplet, Phys. Rev. D 93 (2016) 055043 [arXiv:1512.07462] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Badziak, Interpreting the 750 GeV diphoton excess in minimal extensions of Two-Higgs-Doublet models, arXiv:1512.07497 [INSPIRE].
  16. [16]
    L.J. Hall, K. Harigaya and Y. Nomura, 750 GeV Diphotons: Implications for Supersymmetric Unification, JHEP 03 (2016) 017 [arXiv:1512.07904] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    N. Bizot, S. Davidson, M. Frigerio and J.L. Kneur, Two Higgs doublets to explain the excesses ppγγ(750 GeV) and hτ ± μ , JHEP 03 (2016) 073 [arXiv:1512.08508] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E. Ma, Diphoton Revelation of the Utilitarian Supersymmetric Standard Model, arXiv:1512.09159 [INSPIRE].
  19. [19]
    X.-F. Han, L. Wang, L. Wu, J.M. Yang and M. Zhang, Explaining 750 GeV diphoton excess from top/bottom partner cascade decay in two-Higgs-doublet model extension, Phys. Lett. B 756 (2016) 309 [arXiv:1601.00534] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A.E.C. Hernández, I.d.M. Varzielas and E. Schumacher, The 750 GeV diphoton resonance in the light of a 2HDM with S 3 flavour symmetry, arXiv:1601.00661 [INSPIRE].
  21. [21]
    X.-F. Han, L. Wang and J.M. Yang, An extension of two-Higgs-doublet model and the excesses of 750 GeV diphoton, muon g-2 and hμτ, Phys. Lett. B 757 (2016) 537 [arXiv:1601.04954] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    S.F. King and R. Nevzorov, 750 GeV Diphoton Resonance from Singlets in an Exceptional Supersymmetric Standard Model, JHEP 03 (2016) 139 [arXiv:1601.07242] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Bertuzzo, P.A.N. Machado and M. Taoso, Di-Photon excess in the 2HDM: hasting towards the instability and the non-perturbative regime, arXiv:1601.07508 [INSPIRE].
  24. [24]
    R. Ding, L. Huang, T. Li and B. Zhu, Interpreting 750 GeV Diphoton Excess with R-parity Violation Supersymmetry, arXiv:1512.06560 [INSPIRE].
  25. [25]
    B.C. Allanach, P.S.B. Dev, S.A. Renner and K. Sakurai, Di-photon Excess Explained by a Resonant Sneutrino in R-parity Violating Supersymmetry, arXiv:1512.07645 [INSPIRE].
  26. [26]
    Y.-L. Tang and S.-h. Zhu, NMSSM extended with vector-like particles and the diphoton excess on the LHC, arXiv:1512.08323 [INSPIRE].
  27. [27]
    F. Wang, W. Wang, L. Wu, J.M. Yang and M. Zhang, Interpreting 750 GeV diphoton resonance as degenerate Higgs bosons in NMSSM with vector-like particles, arXiv:1512.08434 [INSPIRE].
  28. [28]
    W. Chao, The Diphoton Excess Inspired Electroweak Baryogenesis, arXiv:1601.04678 [INSPIRE].
  29. [29]
    M. Badziak, M. Olechowski, S. Pokorski and K. Sakurai, Interpreting 750 GeV Diphoton Excess in Plain NMSSM, arXiv:1603.02203 [INSPIRE].
  30. [30]
    P. Agrawal, J. Fan, B. Heidenreich, M. Reece and M. Strassler, Experimental Considerations Motivated by the Diphoton Excess at the LHC, arXiv:1512.05775 [INSPIRE].
  31. [31]
    J. Chang, K. Cheung and C.-T. Lu, Interpreting the 750 GeV diphoton resonance using photon jets in hidden-valley-like models, Phys. Rev. D 93 (2016) 075013 [arXiv:1512.06671] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Chala, M. Duerr, F. Kahlhoefer and K. Schmidt-Hoberg, Tricking Landau-Yang: How to obtain the diphoton excess from a vector resonance, Phys. Lett. B 755 (2016) 145 [arXiv:1512.06833] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    X.-J. Bi et al., A Promising Interpretation of Diphoton Resonance at 750 GeV, arXiv:1512.08497 [INSPIRE].
  34. [34]
    L. Aparicio, A. Azatov, E. Hardy and A. Romanino, Diphotons from Diaxions, arXiv:1602.00949 [INSPIRE].
  35. [35]
    B. Dasgupta, J. Kopp and P. Schwaller, Photons, Photon Jets and Dark Photons at 750 GeV and Beyond, arXiv:1602.04692 [INSPIRE].
  36. [36]
    C.-W. Chiang, H. Fukuda, M. Ibe and T.T. Yanagida, 750 GeV diphoton resonance in a visible heavy QCD axion model, arXiv:1602.07909 [INSPIRE].
  37. [37]
    G. Arcadi, P. Ghosh, Y. Mambrini and M. Pierre, Re-opening dark matter windows compatible with a diphoton excess, arXiv:1603.05601 [INSPIRE].
  38. [38]
    F. Domingo, S. Heinemeyer, J.S. Kim and K. Rolbiecki, The NMSSM lives: with the 750 GeV diphoton excess, Eur. Phys. J. C 76 (2016) 249 [arXiv:1602.07691] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    ATLAS, CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, ATLAS-CONF-2015-044 [CMS-PAS-HIG-15-002].
  42. [42]
    Q.-H. Cao, Y.-Q. Gong, X. Wang, B. Yan and L.L. Yang, One bump or two peaks: The 750 GeV diphoton excess and dark matter with a complex mediator, Phys. Rev. D 93 (2016) 075034 [arXiv:1601.06374] [INSPIRE].ADSGoogle Scholar
  43. [43]
    D.J. Miller, R. Nevzorov and P.M. Zerwas, The Higgs sector of the next-to-minimal supersymmetric standard model, Nucl. Phys. B 681 (2004) 3 [hep-ph/0304049] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    L.J. Hall and T. Watari, Electroweak supersymmetry with an approximate U(1)PQ, Phys. Rev. D 70 (2004) 115001 [hep-ph/0405109] [INSPIRE].ADSGoogle Scholar
  45. [45]
    R. Barbieri, L.J. Hall, A.Y. Papaioannou, D. Pappadopulo and V.S. Rychkov, An alternative NMSSM phenomenology with manifest perturbative unification, JHEP 03 (2008) 005 [arXiv:0712.2903] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    B.A. Dobrescu and K.T. Matchev, Light axion within the next-to-minimal supersymmetric standard model, JHEP 09 (2000) 031 [hep-ph/0008192] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R. Dermisek and J.F. Gunion, The NMSSM Close to the R-symmetry Limit and Naturalness in haa Decays for m a < 2m b, Phys. Rev. D 75 (2007) 075019 [hep-ph/0611142] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D.E. Morrissey and A. Pierce, Modified Higgs Boson Phenomenology from Gauge or Gaugino Mediation in the NMSSM, Phys. Rev. D 78 (2008) 075029 [arXiv:0807.2259] [INSPIRE].ADSGoogle Scholar
  49. [49]
    CLEO collaboration, S.B. Athar et al., Search for radiative decays of Y(1S) into η and η′, Phys. Rev. D 76 (2007) 072003 [arXiv:0704.3063] [INSPIRE].
  50. [50]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    G. Hiller, B physics signals of the lightest CP odd Higgs in the NMSSM at large tan beta, Phys. Rev. D 70 (2004) 034018 [hep-ph/0404220] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    S. Andreas, O. Lebedev, S. Ramos-Sanchez and A. Ringwald, Constraints on a very light CP-odd Higgs of the NMSSM and other axion-like particles, JHEP 08 (2010) 003 [arXiv:1005.3978] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  54. [54]
    B.A. Dobrescu, G.L. Landsberg and K.T. Matchev, Higgs boson decays to CP odd scalars at the Tevatron and beyond, Phys. Rev. D 63 (2001) 075003 [hep-ph/0005308] [INSPIRE].ADSGoogle Scholar
  55. [55]
    F. Domingo and U. Ellwanger, Updated Constraints from B Physics on the MSSM and the NMSSM, JHEP 12 (2007) 090 [arXiv:0710.3714] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    F. Domingo and U. Ellwanger, Constraints from the Muon g-2 on the Parameter Space of the NMSSM, JHEP 07 (2008) 079 [arXiv:0806.0733] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. Domingo, U. Ellwanger, E. Fullana, C. Hugonie and M.-A. Sanchis-Lozano, Radiative Upsilon decays and a light pseudoscalar Higgs in the NMSSM, JHEP 01 (2009) 061 [arXiv:0810.4736] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Jaeckel and M. Spannowsky, Probing MeV to 90 GeV axion-like particles with LEP and LHC, Phys. Lett. B 753 (2016) 482 [arXiv:1509.00476] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    F. Domingo, Update of the flavour-physics constraints in the NMSSM, arXiv:1512.02091 [INSPIRE].
  60. [60]
    CLEO collaboration, W. Love et al., Search for Very Light CP-Odd Higgs Boson in Radiative Decays of Upsilon(S-1), Phys. Rev. Lett. 101 (2008) 151802 [arXiv:0807.1427] [INSPIRE].
  61. [61]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  62. [62]
    ATLAS collaboration, Search for a Higgs boson decaying to four photons through light CP-odd scalar coupling using 4.9 fb −1 of 7 TeV pp collision data taken with ATLAS detector at the LHC, ATLAS-CONF-2012-079.
  63. [63]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  65. [65]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar
  67. [67]
    G. Degrassi and P. Slavich, NLO QCD bottom corrections to Higgs boson production in the MSSM, JHEP 11 (2010) 044 [arXiv:1007.3465] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  68. [68]
    G. Degrassi, S. Di Vita and P. Slavich, NLO QCD corrections to pseudoscalar Higgs production in the MSSM, JHEP 08 (2011) 128 [arXiv:1107.0914] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  69. [69]
    G. Degrassi, S. Di Vita and P. Slavich, On the NLO QCD Corrections to the Production of the Heaviest Neutral Higgs Scalar in the MSSM, Eur. Phys. J. C 72 (2012) 2032 [arXiv:1204.1016] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  70. [70]
    R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S. Liebler, Neutral Higgs production at proton colliders in the CP-conserving NMSSM, Eur. Phys. J. C 75 (2015) 210 [arXiv:1502.07972] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R.N. Hodgkinson, Y → γA 1 in the NMSSM at large tan β, Phys. Lett. B 665 (2008) 219 [arXiv:0802.3197] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M. Low, A. Tesi and L.-T. Wang, A pseudoscalar decaying to photon pairs in the early LHC Run 2 data, JHEP 03 (2016) 108 [arXiv:1512.05328] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    R.S. Gupta, S. Jäger, Y. Kats, G. Perez and E. Stamou, Interpreting a 750 GeV Diphoton Resonance, arXiv:1512.05332 [INSPIRE].
  76. [76]
    P. Draper and D. McKeen, Diphotons from Tetraphotons in the Decay of a 125 GeV Higgs at the LHC, Phys. Rev. D 85 (2012) 115023 [arXiv:1204.1061] [INSPIRE].ADSGoogle Scholar
  77. [77]
    ATLAS collaboration, Measurement of the inclusive isolated prompt photon cross section in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 83 (2011) 052005 [arXiv:1012.4389] [INSPIRE].
  78. [78]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  79. [79]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, UMR 8627, CNRS, Université de Paris-Sud, Univ. Paris-SaclayOrsayFrance
  2. 2.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  3. 3.LUPM, UMR 5299, CNRS, Université de MontpellierMontpellierFrance

Personalised recommendations