Advertisement

Spin-independent interferences and spin-dependent interactions with scalar dark matter

  • R. Martinez
  • F. Ochoa
Open Access
Regular Article - Theoretical Physics

Abstract

We explore mechanisms of interferences under which the spin-independent interaction in the scattering of scalar dark matter with nucleus is suppressed in relation to the spin-dependent one. We offer a detailed derivation of the nuclear amplitudes based on the interactions with quarks in the framework of a nonuniversal U(1)′ extension of the standard model. By assuming a range of parameters compatible with collider searches, electroweak observables and dark matter abundance, we find scenarios for destructive interferences with and without isospin symmetry. The model reveals solutions with mutually interfering scalar particles, canceling the effective spin-independent coupling with only scalar interactions, which requires an extra Higgs boson with mass M H > 125 GeV. The model also possesses scenarios with only vector interactions through two neutral gauge bosons, Z and Z′, which do not exhibit interference effects. Due to the nonuniversality of the U(1)′ symmetry, we distinguish two family structures of the quark sector with different numerical predictions. In one case, we obtain cross sections that pass all the Xenon-based detector experiments. In the other case, limits from LUX experiment enclose an exclusion region for dark matter between 9 and 800 GeV. We examine a third scenario with isospin-violating couplings where interferences between scalar and vector boson exchanges cancel the scattering. We provide solutions where interactions with Xenon-based detectors is suppressed for light dark matter, below 6 GeV, while interactions with Germanium- and Silicon-based detectors exhibit solutions up to the regions of interest for positive signals reported by CoGeNT and CDMS-Si experiments, and compatible with the observed DM relic density for DM mass in the range 8.3–10 GeV. Spin-dependent interactions become the dominant source of scattering around the interference regions, where Maxwellian speed distribution is considered.

Keywords

Beyond Standard Model Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    S.L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22 (1961) 579 [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Salam, Weak and electromagnetic interactions, in proceedings of The 8th Nobel Symposium on Elementary Particle Theory: Relativistic Groups and Analyticity, N. Svartholm ed., Almqvist and Wiksell, Stockholm, Sweden (1968), pg. 367.Google Scholar
  6. [6]
    P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M.W. Goodman and E. Witten, Detectability of Certain Dark Matter Candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Engel, S. Pittel and P. Vogel, Nuclear physics of dark matter detection, Int. J. Mod. Phys. E 1 (1992) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Griest and M. Kamionkowski, Supersymmetric dark matter, Phys. Rept. 333 (2000) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    H. Murayama, Physics Beyond the Standard Model and Dark Matter, arXiv:0704.2276 [INSPIRE].
  15. [15]
    F.D. Kahn and L. Woltjer, Intergalactic Matter and the Galaxy, Astrophys. J. 130 (1959) 705.ADSCrossRefGoogle Scholar
  16. [16]
    Y. Sofue and V. Rubin, Rotation curves of spiral galaxies, Ann. Rev. Astron. Astrophys. 39 (2001) 137 [astro-ph/0010594] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L.E. Strigari, Galactic Searches for Dark Matter, Phys. Rept. 531 (2013) 1 [arXiv:1211.7090] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Refregier, Weak gravitational lensing by large scale structure, Ann. Rev. Astron. Astrophys. 41 (2003) 645 [astro-ph/0307212] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.A. Tyson, G.P. Kochanski and I.P. Dell’Antonio, Detailed mass map of CL0024+1654 from strong lensing, Astrophys. J. 498 (1998) L107 [astro-ph/9801193] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.W. Allen, A.C. Fabian, R.W. Schmidt and H. Ebeling, Cosmological constraints from the local x-ray luminosity function of the most x-ray luminous galaxy clusters, Mon. Not. Roy. Astron. Soc. 342 (2003) 287 [astro-ph/0208394] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
  22. [22]
    Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].
  23. [23]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].
  24. [24]
    J. Chang et al., An excess of cosmic ray electrons at energies of 300-800 GeV, Nature 456 (2008) 362 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Fermi-LAT collaboration, A.A. Abdo et al., Measurement of the Cosmic Ray e + + e spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [INSPIRE].
  26. [26]
    ATLAS collaboration, Search for Dark Matter in Events with Missing Transverse Momentum and a Higgs Boson Decaying to Two Photons in pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 115 (2015) 131801 [arXiv:1506.01081] [INSPIRE].
  27. [27]
    CMS collaboration, Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 092005 [arXiv:1408.2745] [INSPIRE].
  28. [28]
    CDMS-II collaboration, Z. Ahmed et al., Results from a Low-Energy Analysis of the CDMS II Germanium Data, Phys. Rev. Lett. 106 (2011) 131302 [arXiv:1011.2482] [INSPIRE].
  29. [29]
    CoGeNT collaboration, C.E. Aalseth et al., Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].
  30. [30]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].
  31. [31]
    LUX collaboration, D.S. Akerib et al., Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data, Phys. Rev. Lett. 116 (2016) 161301 [arXiv:1512.03506] [INSPIRE].
  32. [32]
    H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].
  33. [33]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    H.-C. Cheng, J.L. Feng and K.T. Matchev, Kaluza-Klein dark matter, Phys. Rev. Lett. 89 (2002) 211301 [hep-ph/0207125] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    F. Burnell and G.D. Kribs, The abundance of Kaluza-Klein dark matter with coannihilation, Phys. Rev. D 73 (2006) 015001 [hep-ph/0509118] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Kong and K.T. Matchev, Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions, JHEP 01 (2006) 038 [hep-ph/0509119] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Kakizaki, S. Matsumoto and M. Senami, Relic abundance of dark matter in the minimal universal extra dimension model, Phys. Rev. D 74 (2006) 023504 [hep-ph/0605280] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.A.R. Cembranos, A. Dobado and A.L. Maroto, Cosmological and astrophysical limits on brane fluctuations, Phys. Rev. D 68 (2003) 103505 [hep-ph/0307062] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Agashe and G. Servant, Warped unification, proton stability and dark matter, Phys. Rev. Lett. 93 (2004) 231805 [hep-ph/0403143] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Birkedal, A. Noble, M. Perelstein and A. Spray, Little Higgs dark matter, Phys. Rev. D 74 (2006) 035002 [hep-ph/0603077] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  45. [45]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: A singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].ADSGoogle Scholar
  47. [47]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Zand dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Profumo and F.S. Queiroz, Constraining the Zmass in 331 models using direct dark matter detection, Eur. Phys. J. C 74 (2014) 2960 [arXiv:1307.7802] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C. Kelso, C.A. de S. Pires, S. Profumo, F.S. Queiroz and P.S. Rodrigues da Silva, A 331 WIMPy Dark Radiation Model, Eur. Phys. J. C 74 (2014) 2797 [arXiv:1308.6630] [INSPIRE].
  52. [52]
    D. Cogollo, A.X. Gonzalez-Morales, F.S. Queiroz and P.R. Teles, Excluding the Light Dark Matter Window of a 331 Model Using LHC and Direct Dark Matter Detection Data, JCAP 11 (2014) 002 [arXiv:1402.3271] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark Matter Complementarity and the ZPortal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1)X models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Ghorbani and H. Ghorbani, Two-portal Dark Matter, Phys. Rev. D 91 (2015) 123541 [arXiv:1504.03610] [INSPIRE].ADSGoogle Scholar
  56. [56]
    K. Ghorbani and H. Ghorbani, Scalar split WIMPs in future direct detection experiments, Phys. Rev. D 93 (2016) 055012 [arXiv:1501.00206] [INSPIRE].ADSGoogle Scholar
  57. [57]
    K. Ghorbani and H. Ghorbani, Scalar Dark Matter in Scale Invariant Standard Model, JHEP 04 (2016) 024 [arXiv:1511.08432] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    CoGeNT collaboration, C.E. Aalseth et al., CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors, Phys. Rev. D 88 (2013) 012002 [arXiv:1208.5737] [INSPIRE].
  59. [59]
    DAMA, LIBRA collaborations, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].
  60. [60]
    CDMS collaboration, R. Agnese et al., Silicon Detector Dark Matter Results from the Final Exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].
  61. [61]
    A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Extending two-Higgs-doublet models by a singlet scalar field — the Case for Dark Matter, JHEP 11 (2014) 105 [arXiv:1408.2106] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    E. Del Nobile, C. Kouvaris and F. Sannino, Interfering Composite Asymmetric Dark Matter for DAMA and CoGeNT, Phys. Rev. D 84 (2011) 027301 [arXiv:1105.5431] [INSPIRE].ADSGoogle Scholar
  63. [63]
    E. Del Nobile, C. Kouvaris, F. Sannino and J. Virkajǎrvi, Dark matter interference, Mod. Phys. Lett. A27 (2012) 1250108.CrossRefMATHGoogle Scholar
  64. [64]
    J.M. Cline and A.R. Frey, Minimal hidden sector models for CoGeNT/DAMA events, Phys. Rev. D 84 (2011) 075003 [arXiv:1108.1391] [INSPIRE].ADSGoogle Scholar
  65. [65]
    J.M. Cline and A.R. Frey, Light Dark Matter Versus Astrophysical Constraints, Phys. Lett. B 706 (2012) 384 [arXiv:1109.4639] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    X. Gao, Z. Kang and T. Li, Origins of the Isospin Violation of Dark Matter Interactions, JCAP 01 (2013) 021 [arXiv:1107.3529] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    R. Martinez, F. Ochoa and J.P. Rubio, Some phenomenological aspects of a new U(1)′ model, Phys. Rev. D 89 (2014) 056008 [arXiv:1303.2734] [INSPIRE].ADSGoogle Scholar
  68. [68]
    R. Martínez, J. Nisperuza, F. Ochoa and J.P. Rubio, Scalar dark matter with CERN-LEP data and Zsearch at the LHC in an U(1)′ model, Phys. Rev. D 90 (2014) 095004 [arXiv:1408.5153] [INSPIRE].ADSGoogle Scholar
  69. [69]
    R. Martinez, J. Nisperuza, F. Ochoa, J.P. Rubio and C.F. Sierra, Scalar coupling limits and diphoton Higgs decay from LHC in an U(1)′ model with scalar dark matter, Phys. Rev. D 92 (2015) 035016 [arXiv:1411.1641] [INSPIRE].ADSGoogle Scholar
  70. [70]
    J. Olsen, CMS 13 TeV Results, CERN Jamboree, 15 december 2015, plots are presented in http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/LHC-Jamboree-2015/index.html.
  71. [71]
    M. Kado, ATLAS 13 TeV Results, CERN Jamboree, 15 December 2015, plots are presented in https://twiki.cern.ch/twiki/bin/view/AtlasPublic/December2015-13TeV.
  72. [72]
    R. Martinez, F. Ochoa and C.F. Sierra, Diphoton decay for a 750 GeV scalar boson in an U(1)′ model, arXiv:1512.05617 [INSPIRE].
  73. [73]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  74. [74]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].
  75. [75]
    CMS collaboration, Search for heavy narrow dilepton resonances in pp collisions at \( \sqrt{s}=7 \) TeV and \( \sqrt{s}=8 \) TeV, Phys. Lett. B 720 (2013) 63 [arXiv:1212.6175] [INSPIRE].
  76. [76]
    R. Diaz, R. Martinez and J.A. Rodriguez, Lepton flavor violation in the two Higgs doublet model type-III, Phys. Rev. D 63 (2001) 095007 [hep-ph/0010149] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M.T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar and K. Schmidt-Hoberg, The unbearable lightness of being: CDMS versus XENON, JCAP 07 (2013) 023 [arXiv:1304.6066] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    J.L. Feng, J. Kumar and D. Sanford, Xenophobic Dark Matter, Phys. Rev. D 88 (2013) 015021 [arXiv:1306.2315] [INSPIRE].ADSGoogle Scholar
  79. [79]
    E. Del Nobile, G.B. Gelmini, P. Gondolo and J.-H. Huh, Update on Light WIMP Limits: LUX, lite and Light, JCAP 03 (2014) 014 [arXiv:1311.4247] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  80. [80]
    V. Cirigliano, M.L. Graesser, G. Ovanesyan and I.M. Shoemaker, Shining LUX on Isospin-Violating Dark Matter Beyond Leading Order, Phys. Lett. B 739 (2014) 293 [arXiv:1311.5886] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs Boson Interactions with Nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M.C. Smith et al., The RAVE Survey: Constraining the Local Galactic Escape Speed, Mon. Not. Roy. Astron. Soc. 379 (2007) 755 [astro-ph/0611671] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations