Advertisement

Testing ATLAS Z+MET excess with LHC Run 2

  • Xiaochuan Lu
  • Satoshi Shirai
  • Takahiro Terada
Open Access
Regular Article - Theoretical Physics

Abstract

The ATLAS collaboration reported a 3σ excess in the search of events containing on-Z dilepton, jets, and large missing momentum (MET) in the 8 TeV LHC run. Motivated by this excess, many models of new physics have been proposed. Recently, the ATLAS and CMS collaborations reported new results for similar Z+MET channels in the 13 TeV run. In this paper, we comprehensively discuss the consistency between the proposed models and the LHC results of Run 1 and Run 2. We find that in models with heavy gluino production, there is generically some tension between the 8 TeV and 13 TeV results. On the other hand, models with light squark production provide relatively better fitting to both results.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets and large missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 318 [arXiv:1503.03290] [INSPIRE].
  2. [2]
    G. Barenboim, J. Bernabeu, V.A. Mitsou, E. Romero and O. Vives, METing SUSY on the Z peak, Eur. Phys. J. C 76 (2016) 57 [arXiv:1503.04184] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    V.A. Mitsou, Conciliating SUSY with the Z-peaked excess, arXiv:1512.06166 [INSPIRE].
  4. [4]
    B. Allanach, A. Raklev and A. Kvellestad, Consistency of the recent ATLAS Z + E Tmiss excess in a simplified GGM model, Phys. Rev. D 91 (2015) 095016 [arXiv:1504.02752] [INSPIRE].ADSGoogle Scholar
  5. [5]
    U. Ellwanger, Possible explanation of excess events in the search for jets, missing transverse momentum and a Z boson in pp collisions, Eur. Phys. J. C 75 (2015) 367 [arXiv:1504.02244] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Cao, L. Shang, J.M. Yang and Y. Zhang, Explanation of the ATLAS Z-peaked excess in the NMSSM, JHEP 06 (2015) 152 [arXiv:1504.07869] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Harigaya, M. Ibe and T. Kitahara, ATLAS on-Z excess via gluino-Higgsino-singlino decay chains in the NMSSM, JHEP 01 (2016) 030 [arXiv:1510.07691] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    X. Lu, S. Shirai and T. Terada, ATLAS Z excess in minimal supersymmetric standard model, JHEP 09 (2015) 204 [arXiv:1506.07161] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.P. Liew, A. Mariotti, K. Mawatari, K. Sakurai and M. Vereecken, Z-peaked excess in goldstini scenarios, Phys. Lett. B 750 (2015) 539 [arXiv:1506.08803] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Kobakhidze, N. Liu, L. Wu and J.M. Yang, ATLAS Z-peaked excess in the MSSM with a light sbottom or stop, Phys. Rev. D 92 (2015) 075008 [arXiv:1504.04390] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Cao, L. Shang, J.M. Yang and Y. Zhang, Explanation of the ATLAS Z-peaked excess by squark pair production in the NMSSM, JHEP 10 (2015) 178 [arXiv:1507.08471] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, ATLAS Z + missing transverse energy excess in the MSSM, Phys. Rev. D 92 (2015) 075029 [arXiv:1506.05799] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J.H. Collins, J.A. Dror and M. Farina, Mixed stops and the ATLAS on-Z excess, Phys. Rev. D 92 (2015) 095022 [arXiv:1508.02419] [INSPIRE].ADSGoogle Scholar
  14. [14]
    N. Vignaroli, Z-peaked excess from heavy gluon decays to vectorlike quarks, Phys. Rev. D 91 (2015) 115009 [arXiv:1504.01768] [INSPIRE].ADSGoogle Scholar
  15. [15]
    CMS collaboration, Search for physics beyond the standard model in events with two leptons, jets and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2015) 124 [arXiv:1502.06031] [INSPIRE].
  16. [16]
    ATLAS collaboration, A search for supersymmetry in events containing a leptonically decaying Z boson, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2015-082 (2015).
  17. [17]
    CMS collaboration, Search for new physics in final states with two opposite-sign same-flavor leptons, jets and missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-SUS-15-011 (2015).
  18. [18]
    M. Schreyer, A. Redelbach and R. Ströhmer, Search for supersymmetry in events containing light leptons, jets and missing transverse momentum in \( \sqrt{s}=8 \) T eV pp collisions with the ATLAS detector, Ph.D. thesis, Universität Würzburg, Würzburg, Germany (2015).Google Scholar
  19. [19]
    P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, JHEP 03 (2009) 016 [arXiv:0812.3668] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].
  22. [22]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].
  23. [23]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 487] [hep-ph/0406088] [INSPIRE].
  25. [25]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].
  26. [26]
    L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with Wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Y. Nomura and S. Shirai, Supersymmetry from typicality: TeV-scale gauginos and PeV-scale squarks and sleptons, Phys. Rev. Lett. 113 (2014) 111801 [arXiv:1407.3785] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in pure gravity mediation model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation with m 3/2 = 10-100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].
  33. [33]
    M. Toharia and J.D. Wells, Gluino decays with heavier scalar superpartners, JHEP 02 (2006) 015 [hep-ph/0503175] [INSPIRE].
  34. [34]
    P. Gambino, G.F. Giudice and P. Slavich, Gluino decays in split supersymmetry, Nucl. Phys. B 726 (2005) 35 [hep-ph/0506214] [INSPIRE].
  35. [35]
    R. Sato, S. Shirai and K. Tobioka, Gluino decay as a probe of high scale supersymmetry breaking, JHEP 11 (2012) 041 [arXiv:1207.3608] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R. Sato, S. Shirai and K. Tobioka, Flavor of gluino decay in high-scale supersymmetry, JHEP 10 (2013) 157 [arXiv:1307.7144] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets at \( \sqrt{s}=8 \) TeV proton-proton collisions with the ATLAS detector, JHEP 10 (2014) 024 [arXiv:1407.0600] [INSPIRE].
  39. [39]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  41. [41]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  44. [44]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  45. [45]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
  47. [47]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  49. [49]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].
  50. [50]
    A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].ADSGoogle Scholar
  52. [52]
    W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    W. Beenakker et al., Squark and gluino hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    W. Beenakker, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].
  55. [55]
    W. Beenakker et al., Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  57. [57]
    C. Degrande et al., UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  59. [59]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-062 (2015).
  60. [60]
    ATLAS collaboration, Search for supersymmetry in events with four or more leptons in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector,Phys. Rev. D 90 (2014) 052001 [arXiv:1405.5086] [INSPIRE].
  61. [61]
    CMS collaboration, Search for anomalous production of events with three or more leptons in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 90 (2014) 032006 [arXiv:1404.5801] [INSPIRE].
  62. [62]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  63. [63]
    ATLAS collaboration, Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 04 (2015) 116 [arXiv:1501.03555] [INSPIRE].
  64. [64]
    ATLAS collaboration, Search for gluinos in events with an isolated lepton, jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-076 (2015).
  65. [65]
    R. Ding, Y. Fan, J. Li, T. Li and B. Zhu, The ATLAS leptonic-Z excess from light squark productions in the NMSSM extension with a heavy Dirac gluino, arXiv:1508.07452 [INSPIRE].
  66. [66]
    ATLAS collaboration, Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052008 [arXiv:1407.0608] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Xiaochuan Lu
    • 1
  • Satoshi Shirai
    • 2
  • Takahiro Terada
    • 3
    • 4
  1. 1.Department of PhysicsUniversity of CaliforniaDavisU.S.A.
  2. 2.Deutsches Elektronen-Synchrotron (DESY)HamburgGermany
  3. 3.Department of PhysicsThe University of TokyoTokyoJapan
  4. 4.Asia Pacific Center for Theoretical Physics (APCTP)PohangKorea

Personalised recommendations