The light asymptotic limit of conformal blocks in Toda field theory

  • Hasmik Poghosyan
  • Rubik Poghossian
  • Gor Sarkissian
Open Access
Regular Article - Theoretical Physics


We compute the light asymptotic limit of A n−1 Toda conformal blocks by using the AGT correspondence. We show that for certain class of CFT blocks the corresponding Nekrasov partition functions in this limit are simplified drastically being represented as a sum of a restricted class of Young diagrams. In the particular case of A 2 Toda we also compute the corresponding conformal blocks using conventional CFT techniques finding a perfect agreement with the results obtained from the Nekrasov partition functions.


Conformal and W Symmetry Supersymmetric gauge theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Braaten, T. Curtright, G. Ghandour and C.B. Thorn, Nonperturbative weak coupling analysis of the quantum Liouville field theory, Annals Phys. 153 (1984) 147 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E. Braaten, T. Curtright and C.B. Thorn, An exact operator solution of the quantum Liouville field theory, Annals Phys. 147 (1983) 365 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    C.B. Thorn, Liouville perturbation theory, Phys. Rev. D 66 (2002) 027702 [hep-th/0204142] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    V.A. Fateev and A.V. Litvinov, Correlation functions in conformal Toda field theory. I, JHEP 11 (2007) 002 [arXiv:0709.3806] [INSPIRE].
  5. [5]
    N. Seiberg, Notes on quantum Liouville theory and quantum gravity, Prog. Theor. Phys. Suppl. 102 (1990) 319 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    V. Fateev and S. Ribault, Conformal Toda theory with a boundary, JHEP 12 (2010) 089 [arXiv:1007.1293] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    P. Menotti and E. Tonni, Liouville field theory with heavy charges. I. The pseudosphere, JHEP 06 (2006) 020 [hep-th/0602206] [INSPIRE].
  9. [9]
    P. Menotti and E. Tonni, Liouville field theory with heavy charges. II. The conformal boundary case, JHEP 06 (2006) 022 [hep-th/0602221] [INSPIRE].
  10. [10]
    D. Harlow, J. Maltz and E. Witten, Analytic continuation of Liouville theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    H. Poghosyan and G. Sarkissian, On classical and semiclassical properties of the Liouville theory with defects, JHEP 11 (2015) 005 [arXiv:1505.00366] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    N. Wyllard, A N −1 conformal Toda field theory correlation functions from conformal N = 2 SU(N ) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    V.A. Fateev and A.V. Litvinov, Integrable structure, W -symmetry and AGT relation, JHEP 01 (2012) 051 [arXiv:1109.4042] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, in Strings, branes and dualities. Proceedings, NATO Advanced Study Institute, Cargese France May 26-June 14 1997 [hep-th/9801061] [INSPIRE].
  17. [17]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    R. Poghossian, Recursion relations in CFT and N = 2 SYM theory, JHEP 12 (2009) 038 [arXiv:0909.3412] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Marshakov, A. Mironov and A. Morozov, On AGT relations with surface operator insertion and stationary limit of beta-ensembles, J. Geom. Phys. 61 (2011) 1203 [arXiv:1011.4491] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    M. Piatek, Classical torus conformal block, N = 2 twisted superpotential and the accessory parameter of Lamé equation, JHEP 03 (2014) 124 [arXiv:1309.7672] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Poghossian, Deformed SW curve and the null vector decoupling equation in Toda field theory, JHEP 04 (2016) 070 [arXiv:1601.05096] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Mironov and A. Morozov, Proving AGT relations in the large-c limit, Phys. Lett. B 682 (2009) 118 [arXiv:0909.3531] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    V. Fateev and S. Ribault, The large central charge limit of conformal blocks, JHEP 02 (2012) 001 [arXiv:1109.6764] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    N. Hama and K. Hosomichi, AGT relation in the light asymptotic limit, JHEP 10 (2013) 152 [arXiv:1307.8174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    P. Bowcock and G.M.T. Watts, On the classification of quantum W algebras, Nucl. Phys. B 379 (1992) 63 [hep-th/9111062] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Hasmik Poghosyan
    • 1
  • Rubik Poghossian
    • 1
  • Gor Sarkissian
    • 1
    • 2
  1. 1.Yerevan Physics InstituteYerevanArmenia
  2. 2.Department of PhysicsYerevan State UniversityYerevanArmenia

Personalised recommendations