Matching four-point functions in higher spin AdS3/CFT2

  • Eliot Hijano
  • Per Kraus
  • Eric Perlmutter


Working in the context of the proposed duality between 3D higher spin gravity and 2D W N minimal model CFTs, we compute a class of four-point functions in the bulk and on the boundary, and demonstrate precise agreement between them. This is the first computation of a correlator in 3D higher spin gravity whose functional form is not fixed by conformal invariance. In the bulk we make use of elegant methods to solve the scalar field equation using only matrix manipulations, while on the CFT side we employ the Coulomb gas representation. Comparison is made in the semiclassical limit, in which the central charge is taken to infinity at fixed N. Along the way, we establish the rules for computing correlation functions of multi-trace operators in higher spin gravity. The method involves solving the scalar master field equation in a general representation of the bulk gauge algebra. Although most of our work is carried out for the bulk theory based on SL(N) × SL(N), we also discuss how our methods can be adapted to the hs[λ] × hs[λ] theory, which is relevant in the ’t Hooft limit.


Gauge-gravity correspondence AdS-CFT Correspondence 


  1. [1]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, arXiv:1207.6697 [INSPIRE].
  2. [2]
    S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, arXiv:1208.4036 [INSPIRE].
  3. [3]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M.R. Gaberdiel and R. Gopakumar, Triality in Minimal Model Holography, JHEP 07 (2012) 127 [arXiv:1205.2472] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M. Henneaux and S.-J. Rey, Nonlinear W infinity as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3-D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    K. Papadodimas and S. Raju, Correlation Functions in Holographic Minimal Models, Nucl. Phys. B 856 (2012) 607 [arXiv:1108.3077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    C.-M. Chang and X. Yin, Correlators in W N Minimal Model Revisited, JHEP 10 (2012) 050 [arXiv:1112.5459] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical Defects in Higher Spin Theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    E. Perlmutter, T. Prochazka and J. Raeymaekers, The semiclassical limit of W N CFTs and Vasiliev theory, JHEP 05 (2013) 007 [arXiv:1210.8452] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    C.-M. Chang and X. Yin, Higher Spin Gravity with Matter in AdS 3 and Its CFT Dual, JHEP 10 (2012) 024 [arXiv:1106.2580] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Ammon, P. Kraus and E. Perlmutter, Scalar fields and three-point functions in D = 3 higher spin gravity, JHEP 07 (2012) 113 [arXiv:1111.3926] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    P. Kraus and E. Perlmutter, Probing higher spin black holes, JHEP 02 (2013) 096 [arXiv:1209.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    V. Dotsenko and V. Fateev, Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models, Nucl. Phys. B 240 (1984) 312 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    V. Dotsenko and V. Fateev, Four Point Correlation Functions and the Operator Algebra in the Two-Dimensional Conformal Invariant Theories with the Central Charge c < 1, Nucl. Phys. B 251 (1985) 691 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  19. [19]
    M. Berkooz, A. Sever and A. Shomer, ‘Double tracedeformations, boundary conditions and space-time singularities, JHEP 05 (2002) 034 [hep-th/0112264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition Functions of Holographic Minimal Models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    F. Bais, P. Bouwknegt, M. Surridge and K. Schoutens, Coset Construction for Extended Virasoro Algebras, Nucl. Phys. B 304 (1988) 371 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Jevicki and J. Yoon, Field Theory of Primaries in W N Minimal Models, arXiv:1302.3851 [INSPIRE].
  25. [25]
    C.-M. Chang and X. Yin, A semi-local holographic minimal model, arXiv:1302.4420 [INSPIRE].
  26. [26]
    V. Fateev and A. Litvinov, Correlation functions in conformal Toda field theory. I., JHEP 11 (2007) 002 [arXiv:0709.3806] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    C. Pope, L. Romans and X. Shen, W(∞) and the Racah-Wigner algebra, Nucl. Phys. B 339 (1990) 191 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    B. Khesin and F. Malikov, Universal Drinfeld-Sokolov reduction and matrices of complex size, Commun. Math. Phys. 175 (1996) 113 [hep-th/9405116] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, arXiv:1207.4485 [INSPIRE].
  31. [31]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York, U.S.A. (1997) pg. 890.MATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.
  2. 2.DAMTP, Centre for Mathematical SciencesUniversity of CambridgeCambridgeU.K.

Personalised recommendations