Advertisement

Dark matter search at a linear collider: effective operator approach

  • Yoonseok John Chae
  • Maxim Perelstein
Article

Abstract

Experiments at electron-positron colliders can search for dark matter particle pair-production in association with a photon. We estimate the sensitivity of this search at the proposed International Linear Collider (ILC), under a variety of run scenarios. We employ the effective operator formalism to provide a quasi-model-independent theoretical description of the signal, and present the reach of the ILC in terms of the scale Λ suppressing the dark matter-electron coupling operator. We find that at the 250 GeV center-of-mass energy, the ILC can probe Λ up to 650–900 GeV, approximately a factor of 2 above the best current bounds from LEP-2. With 1 TeV energy and polarized beams, the reach can be extended to 2–3.5TeV. The ILC can discover this signature even if annihilation to electrons provides only a small fraction of the total dark matter annihilation rate in the early universe. We also argue that large regions of parameter space allowed by current LHC and direct detection bounds will be accessible at the ILC.

Keywords

e+−e- Experiments 

References

  1. [1]
    A. Birkedal, K. Matchev and M. Perelstein, Dark matter at colliders: A Model independent approach, Phys. Rev. D 70 (2004) 077701 [hep-ph/0403004] [INSPIRE].ADSGoogle Scholar
  2. [2]
    C. Bartels and J. List, Model-independent WIMP searches at the ILC, eConf C 0705302 (2007) COS02 [arXiv:0709.2629] [INSPIRE].
  3. [3]
    C. Bartels and J. List, Model independent WIMP Searches in full Simulation of the ILD Detector, arXiv:1007.2748 [INSPIRE].
  4. [4]
    C. Bartels, O. Kittel, U. Langenfeld and J. List, Model-independent WIMP Characterisation using ISR, arXiv:1202.6516 [INSPIRE].
  5. [5]
    C. Bartels, M. Berggren and J. List, Characterising WIMPs at a future e+e Linear Collider, Eur. Phys. J. C 72 (2012) 2213 [arXiv:1206.6639] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Beltrán, D. Hooper, E.W. Kolb, Z.A. Krusberg and T.M. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Goodman et al., Constraints on Light Majorana dark Matter from Colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].ADSGoogle Scholar
  8. [8]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the Frontier of Dark Matter Direct Detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Goodman et al., Constraints on Dark Matter from Colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing Energy Signatures of Dark Matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].ADSGoogle Scholar
  11. [11]
    CMS collaboration, S. Chatrchyan et al., Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    ATLAS collaboration, G. Aad et al., Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, JHEP 04 (2013) 075 [arXiv:1210.4491] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP Shines Light on Dark Matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].ADSGoogle Scholar
  14. [14]
    Y. Mambrini and B. Zaldivar, When LEP and Tevatron combined with WMAP and XENON100 shed light on the nature of Dark Matter, JCAP 10 (2011) 023 [arXiv:1106.4819] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Konar, K. Kong, K.T. Matchev and M. Perelstein, Shedding Light on the Dark Sector with Direct WIMP Production, New J. Phys. 11 (2009) 105004 [arXiv:0902.2000] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Pasztor and M. Perelstein, Exploring new physics through contact interactions in lepton pair production at a linear collider, eConf C010630 (2001) P315 [hep-ph/0111471] [INSPIRE].
  17. [17]
    I.M. Shoemaker and L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].ADSGoogle Scholar
  18. [18]
    P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a Razor to Dark Matter Parameter Space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. March-Russell, J. Unwin and S.M. West, Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron Bounds on the Dark Matter Direct Detection Cross-Section for Vector Mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Phinney, ILC Reference Design Report - Accelerator Executive Summary, ICFA Beam Dyn. Newslett. 42 (2007) 7.Google Scholar
  23. [23]
    S. Boogert et al., Polarimeters and Energy Spectrometers for the ILC Beam Delivery System, 2009 JINST 4 P10015 [arXiv:0904.0122] [INSPIRE].
  24. [24]
    M.E. Peskin, Comparison of LHC and ILC Capabilities for Higgs Boson Coupling Measurements, arXiv:1207.2516 [INSPIRE].
  25. [25]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Dreiner, M. Huck, M. Krämer, D. Schmeier and J. Tattersall, Illuminating Dark Matter at the ILC, Phys. Rev. D 87 (2013) 075015 [arXiv:1211.2254] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Laboratory of Elementary Particle PhysicsCornell UniversityIthacaU.S.A

Personalised recommendations