# Neutrino mass from a d=7 effective operator in a SUSY-GUT framework

- 64 Downloads
- 7 Citations

## Abstract

Models, where neutrino mass originates from physics at the TeV scale and which are potentially testable at the LHC, need additional suppression mechanisms to describe the smallness of neutrino masses. We consider models in which neutrino mass is generated from the *d* = 7 operator *LLH* _{ u } *H* _{ u } *H* _{ d } *H* _{ u } in the context of SUSY-GUTs containing an SU(5) subgroup, where the *d* = 5 Weinberg operator can be forbidden by a discrete symmetry. That is, we identify the embeddings in GUT multiplets and their consequences for phenomenology and renormalization group evolution. We use a specific example to exemplify the challenges. In this case, additional heavy *d*-quarks are predicted, which are constrained by cosmology, in particular, by big bang nucleosynthesis and direct searches for heavy nuclei. We show that in the NMSSM extension of the model, the discrete symmetry needs to be broken, which can be the origin of deviations from tri-bimaximal mixings. Finally we demonstrate that our example is the only tree level decomposition which is consistent with perturbativity up to the GUT scale and neutrino mass generation by a leading *d* = 7 contribution.

## Keywords

Beyond Standard Model Neutrino Physics## References

- [1]DAYA-BAY collaboration, F. An et al.,
*Observation of electron-antineutrino disappearance at Daya Bay*,*Phys. Rev. Lett.***108**(2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar - [2]RENO collaboration, J. Ahn et al.,
*Observation of reactor electron antineutrino disappearance in the RENO experiment*,*Phys. Rev. Lett.***108**(2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar - [3]G. Altarelli and F. Feruglio,
*Discrete flavor symmetries and models of neutrino mixing*,*Rev. Mod. Phys.***82**(2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar - [4]ATLAS collaboration,
*Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC*,*Phys. Lett.***B 716**(2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar - [5]CMS collaboration,
*Observation of a new boson at a mass of*125*GeV with the CMS experiment at the LHC*,*Phys. Lett.***B 716**(2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar - [6]ATLAS collaboration,
*Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using*4*.*7 fb^{−1}*of*\( \sqrt{s}=7 \)*TeV proton-proton collision data*,*Phys. Rev.***D 87**(2013) 012008 [arXiv:1208.0949] [INSPIRE].ADSGoogle Scholar - [7]CMS collaboration,
*Search for new physics in events with opposite-sign leptons, jets and missing transverse energy in pp collisions at*\( \sqrt{s}=7 \)*TeV*,*Phys. Lett.***B 718**(2013) 815 [arXiv:1206.3949] [INSPIRE].ADSGoogle Scholar - [8]ATLAS collaboration,
*Search for new phenomena in events with three charged leptons at a center-of-mass energy of*7*TeV with the ATLAS detector*,*Phys. Rev.***D 87**(2013) 052002 [arXiv:1211.6312] [INSPIRE].ADSGoogle Scholar - [9]CMS collaboration,
*Search for supersymmetry in hadronic final states using MT*2*in pp collisions at*\( \sqrt{s}=7 \)*TeV*,*JHEP***10**(2012) 018 [arXiv:1207.1798] [INSPIRE].ADSGoogle Scholar - [10]CMS collaboration,
*Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at*\( \sqrt{s}=7 \)*TeV*,*Phys. Rev. Lett.***109**(2012) 171803 [arXiv:1207.1898] [INSPIRE].ADSCrossRefGoogle Scholar - [11]ATLAS collaboration,
*Search for long-lived, heavy particles in final states with a muon and multi-track displaced vertex in proton-proton collisions at*\( \sqrt{s}=7 \)*TeV with the ATLAS detector*,*Phys. Lett.***B 719**(2013) 280 [arXiv:1210.7451] [INSPIRE].ADSGoogle Scholar - [12]ATLAS collaboration,
*Searches for heavy long-lived sleptons and R-hadrons with the ATLAS detector in pp collisions at*\( \sqrt{s}=7 \)*TeV*,*Phys. Lett.***B 720**(2013) 277 [arXiv:1211.1597] [INSPIRE].ADSGoogle Scholar - [13]CMS collaboration,
*Search for pair production of third-generation leptoquarks and top squarks in pp collisions at*\( \sqrt{s}=7 \)*TeV*,*Phys. Rev. Lett.***110**(2013) 081801 [arXiv:1210.5629] [INSPIRE].ADSCrossRefGoogle Scholar - [14]CMS collaboration,
*Search for new physics in events with photons, jets and missing transverse energy in pp collisions at*\( \sqrt{s}=7 \)*TeV*,*JHEP***03**(2013) 111 [arXiv:1211.4784] [INSPIRE].ADSGoogle Scholar - [15]ATLAS collaboration,
*Search for a heavy narrow resonance decaying to eμ, eτ, or μτ with the ATLAS detector in*\( \sqrt{s}=7 \)*TeV pp collisions at the LHC*, arXiv:1212.1272 [INSPIRE]. - [16]P. Bechtle et al.,
*Constrained supersymmetry after two years of LHC data: a global view with Fittino*,*JHEP***06**(2012) 098 [arXiv:1204.4199] [INSPIRE].ADSCrossRefGoogle Scholar - [17]O. Buchmueller et al.,
*The CMSSM and NUHM*1*in light of*7*TeV LHC, B*_{s}→*μ*^{+}*μ*^{−}*and XENON*100*data*,*Eur. Phys. J.***C 72**(2012) 2243 [arXiv:1207.7315] [INSPIRE].ADSGoogle Scholar - [18]M. Papucci, J.T. Ruderman and A. Weiler,
*Natural SUSY endures*,*JHEP***09**(2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar - [19]R. Mahbubani, M. Papucci, G. Perez, J.T. Ruderman and A. Weiler,
*Light non-degenerate squarks at the LHC*, arXiv:1212.3328 [INSPIRE]. - [20]J.L. Feng and D. Sanford,
*A natural*125*GeV Higgs boson in the MSSM from focus point supersymmetry with A-terms*,*Phys. Rev.***D 86**(2012) 055015 [arXiv:1205.2372] [INSPIRE].ADSGoogle Scholar - [21]H. Baer, V. Barger, P. Huang and X. Tata,
*Natural supersymmetry: LHC, dark matter and ILC searches*,*JHEP***05**(2012) 109 [arXiv:1203.5539] [INSPIRE].ADSCrossRefGoogle Scholar - [22]B. Allanach and B. Gripaios,
*Hide and seek with natural supersymmetry at the LHC*,*JHEP***05**(2012) 062 [arXiv:1202.6616] [INSPIRE].ADSCrossRefGoogle Scholar - [23]Z. Han, A. Katz, M. Son and B. Tweedie,
*Boosting searches for natural SUSY with RPV via gluino cascades*, arXiv:1211.4025 [INSPIRE]. - [24]U. Ellwanger,
*A Higgs boson near*125*GeV with enhanced di-photon signal in the NMSSM*,*JHEP***03**(2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar - [25]J.F. Gunion, Y. Jiang and S. Kraml,
*Could two NMSSM Higgs bosons be present near*125*GeV?*,*Phys. Rev.***D 86**(2012) 071702 [arXiv:1207.1545] [INSPIRE].ADSGoogle Scholar - [26]J.F. Gunion, Y. Jiang and S. Kraml,
*The constrained NMSSM and Higgs near*125*GeV*,*Phys. Lett.***B 710**(2012) 454 [arXiv:1201.0982] [INSPIRE].ADSGoogle Scholar - [27]D. Das, U. Ellwanger and A.M. Teixeira,
*Modified signals for supersymmetry in the NMSSM with a singlino-like LSP*,*JHEP***04**(2012) 067 [arXiv:1202.5244] [INSPIRE].ADSCrossRefGoogle Scholar - [28]G.G. Ross, K. Schmidt-Hoberg and F. Staub,
*The generalised NMSSM at one loop: fine tuning and phenomenology*,*JHEP***08**(2012) 074 [arXiv:1205.1509] [INSPIRE].ADSCrossRefGoogle Scholar - [29]S. King, M. Mühlleitner, R. Nevzorov and K. Walz,
*Natural NMSSM Higgs bosons*,*Nucl. Phys.***B 870**(2013) 323 [arXiv:1211.5074] [INSPIRE].ADSCrossRefGoogle Scholar - [30]H.E. Haber and M. Sher,
*Higgs mass bound in E*_{6}*based supersymmetric theories*,*Phys. Rev.***D 35**(1987) 2206 [INSPIRE].ADSGoogle Scholar - [31]M. Drees,
*Comment on*‘*Higgs boson mass bound in E*_{6}*based supersymmetric theories*’,*Phys. Rev.***D 35**(1987) 2910 [INSPIRE].ADSGoogle Scholar - [32]M. Cvetič, D.A. Demir, J. Espinosa, L. Everett and P. Langacker,
*Electroweak breaking and the μ problem in supergravity models with an additional*U(1),*Phys. Rev.***D 56**(1997) 2861 [*Erratum ibid.***D 58**(1998) 119905] [hep-ph/9703317] [INSPIRE]. - [33]Y. Zhang, H. An, X.-D. Ji and R.N. Mohapatra,
*Light Higgs mass bound in SUSY left-right models*,*Phys. Rev.***D 78**(2008) 011302 [arXiv:0804.0268] [INSPIRE].ADSGoogle Scholar - [34]M. Hirsch, M. Malinsky, W. Porod, L. Reichert and F. Staub,
*Hefty MSSM-like light Higgs in extended gauge models*,*JHEP***02**(2012) 084 [arXiv:1110.3037] [INSPIRE].ADSCrossRefGoogle Scholar - [35]B. O’Leary, W. Porod and F. Staub,
*Mass spectrum of the minimal SUSY B-L model*,*JHEP***05**(2012) 042 [arXiv:1112.4600] [INSPIRE].CrossRefGoogle Scholar - [36]I. Gogoladze, F. Nasir and Q. Shafi,
*Non-universal gaugino masses and natural supersymmetry*, arXiv:1212.2593 [INSPIRE]. - [37]P. Minkowski,
*μ*→*eγ at a rate of one out of*1*-billion muon decays?*,*Phys. Lett.***B 67**(1977) 421 [INSPIRE].ADSGoogle Scholar - [38]T. Yanagida,
*Horizontal gauge symmetry and masses of neutrinos*, in*Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories*, Tsukuba Japan February 13–14 1979 [INSPIRE]. - [39]M. Gell-Mann, P. Ramond and R. Slansky,
*Complex spinors and unified theories*, Print-80-0576, (1979) [INSPIRE]. - [40]R.N. Mohapatra and G. Senjanović,
*Neutrino mass and spontaneous parity violation*,*Phys. Rev. Lett.***44**(1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar - [41]S. Weinberg,
*Baryon and lepton nonconserving processes*,*Phys. Rev. Lett.***43**(1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar - [42]E. Ma,
*Pathways to naturally small neutrino masses*,*Phys. Rev. Lett.***81**(1998) 1171 [hep-ph/9805219] [INSPIRE].ADSCrossRefGoogle Scholar - [43]K. Babu and C.N. Leung,
*Classification of effective neutrino mass operators*,*Nucl. Phys.***B 619**(2001) 667 [hep-ph/0106054] [INSPIRE].ADSCrossRefGoogle Scholar - [44]A. de Gouvêa and J. Jenkins,
*A survey of lepton number violation via effective operators*,*Phys. Rev.***D 77**(2008) 013008 [arXiv:0708.1344] [INSPIRE].ADSGoogle Scholar - [45]F. Bonnet, M. Hirsch, T. Ota and W. Winter,
*Systematic study of the D*= 5*Weinberg operator at one-loop order*,*JHEP***07**(2012) 153 [arXiv:1204.5862] [INSPIRE].ADSCrossRefGoogle Scholar - [46]Y. Farzan, S. Pascoli and M.A. Schmidt,
*Recipes and ingredients for neutrino mass at loop level*,*JHEP***03**(2013) 107 [arXiv:1208.2732] [INSPIRE].ADSCrossRefGoogle Scholar - [47]P.W. Angel, N.L. Rodd and R.R. Volkas,
*Origin of neutrino masses at the LHC:*Δ*L*= 2*effective operators and their ultraviolet completions*, arXiv:1212.6111 [INSPIRE]. - [48]R. Mohapatra and J. Valle,
*Neutrino mass and baryon number nonconservation in superstring models*,*Phys. Rev.***D 34**(1986) 1642 [INSPIRE].ADSGoogle Scholar - [49]R. Hempfling,
*Neutrino masses and mixing angles in SUSY GUT theories with explicit R-parity breaking*,*Nucl. Phys.***B 478**(1996) 3 [hep-ph/9511288] [INSPIRE].ADSCrossRefGoogle Scholar - [50]H.-P. Nilles and N. Polonsky,
*Supersymmetric neutrino masses, R symmetries and the generalized μ problem*,*Nucl. Phys.***B 484**(1997) 33 [hep-ph/9606388] [INSPIRE].ADSCrossRefGoogle Scholar - [51]F. Borzumati, Y. Grossman, E. Nardi and Y. Nir,
*Neutrino masses and mixing in supersymmetric models without R-parity*,*Phys. Lett.***B 384**(1996) 123 [hep-ph/9606251] [INSPIRE].ADSGoogle Scholar - [52]E. Nardi,
*Renormalization group induced neutrino masses in supersymmetry without R-parity*,*Phys. Rev.***D 55**(1997) 5772 [hep-ph/9610540] [INSPIRE].ADSGoogle Scholar - [53]E. Chun, S. Kang, C. Kim and U. Lee,
*Supersymmetric neutrino masses and mixing with R-parity violation*,*Nucl. Phys.***B 544**(1999) 89 [hep-ph/9807327] [INSPIRE].ADSCrossRefGoogle Scholar - [54]M. Hirsch, M. Diaz, W. Porod, J. Romao and J. Valle,
*Neutrino masses and mixings from supersymmetry with bilinear R-parity violation: a theory for solar and atmospheric neutrino oscillations*,*Phys. Rev.***D 62**(2000) 113008 [*Erratum ibid.***D 65**(2002) 119901] [hep-ph/0004115] [INSPIRE]. - [55]M. Diaz, M. Hirsch, W. Porod, J. Romao and J. Valle,
*Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: analytical versus numerical results*,*Phys. Rev.***D 68**(2003) 013009 [*Erratum ibid.***D 71**(2005) 059904] [hep-ph/0302021] [INSPIRE]. - [56]A. Dedes, S. Rimmer and J. Rosiek,
*Neutrino masses in the lepton number violating MSSM*,*JHEP***08**(2006) 005 [hep-ph/0603225] [INSPIRE].ADSCrossRefGoogle Scholar - [57]B. Allanach and C. Kom,
*Lepton number violating mSUGRA and neutrino masses*,*JHEP***04**(2008) 081 [arXiv:0712.0852] [INSPIRE].ADSCrossRefGoogle Scholar - [58]P. Ghosh and S. Roy,
*Neutrino masses and mixing, lightest neutralino decays and a solution to the μ problem in supersymmetry*,*JHEP***04**(2009) 069 [arXiv:0812.0084] [INSPIRE].ADSCrossRefGoogle Scholar - [59]K. Babu and S. Nandi,
*Natural fermion mass hierarchy and new signals for the Higgs boson*,*Phys. Rev.***D 62**(2000) 033002 [hep-ph/9907213] [INSPIRE].ADSGoogle Scholar - [60]M.-C. Chen, A. de Gouvêa and B.A. Dobrescu,
*Gauge trimming of neutrino masses*,*Phys. Rev.***D 75**(2007) 055009 [hep-ph/0612017] [INSPIRE].ADSGoogle Scholar - [61]I. Gogoladze, N. Okada and Q. Shafi,
*NMSSM and Seesaw physics at LHC*,*Phys. Lett.***B 672**(2009) 235 [arXiv:0809.0703] [INSPIRE].ADSGoogle Scholar - [62]G.F. Giudice and O. Lebedev,
*Higgs-dependent Yukawa couplings*,*Phys. Lett.***B 665**(2008) 79 [arXiv:0804.1753] [INSPIRE].ADSGoogle Scholar - [63]K. Babu, S. Nandi and Z. Tavartkiladze,
*New mechanism for neutrino mass generation and triply charged Higgs bosons at the LHC*,*Phys. Rev.***D 80**(2009) 071702 [arXiv:0905.2710] [INSPIRE].ADSGoogle Scholar - [64]P.-H. Gu, H.-J. He, U. Sarkar and X.-M. Zhang,
*Double type-II seesaw, baryon asymmetry and dark matter for cosmic e*^{±}*excesses*,*Phys. Rev.***D 80**(2009) 053004 [arXiv:0906.0442] [INSPIRE].ADSGoogle Scholar - [65]F. Bonnet, D. Hernandez, T. Ota and W. Winter,
*Neutrino masses from higher than D*= 5*effective operators*,*JHEP***10**(2009) 076 [arXiv:0907.3143] [INSPIRE].ADSCrossRefGoogle Scholar - [66]I. Picek and B. Radovcic,
*Novel TeV-scale seesaw mechanism with Dirac mediators*,*Phys. Lett.***B 687**(2010) 338 [arXiv:0911.1374] [INSPIRE].ADSGoogle Scholar - [67]Y. Liao, G.-Z. Ning and L. Ren,
*Flavor violating transitions of charged leptons from a seesaw mechanism of dimension seven*,*Phys. Rev.***D 82**(2010) 113003 [arXiv:1008.0117] [INSPIRE].ADSGoogle Scholar - [68]Y. Liao,
*Unique neutrino mass operator at any mass dimension*,*Phys. Lett.***B 694**(2011) 346 [arXiv:1009.1692] [INSPIRE].ADSGoogle Scholar - [69]Y. Liao,
*Neutrino mass operators of dimension up to nine in two-Higgs-doublet model*,*Phys. Lett.***B 698**(2011) 288 [arXiv:1010.5326] [INSPIRE].ADSGoogle Scholar - [70]S. Kanemura and T. Ota,
*Neutrino masses from loop-induced d*≥ 7*operators*,*Phys. Lett.***B 694**(2010) 233 [arXiv:1009.3845] [INSPIRE].ADSGoogle Scholar - [71]M.B. Krauss, T. Ota, W. Porod and W. Winter,
*Neutrino mass from higher than D*= 5*effective operators in SUSY and its test at the LHC*,*Phys. Rev.***D 84**(2011) 115023 [arXiv:1109.4636] [INSPIRE].ADSGoogle Scholar - [72]S. Dimopoulos, S. Raby and F. Wilczek,
*Supersymmetry and the scale of unification*,*Phys. Rev.***D 24**(1981) 1681 [INSPIRE].ADSGoogle Scholar - [73]L.E. Ibáñez and G.G. Ross,
*Low-energy predictions in supersymmetric grand unified theories*,*Phys. Lett.***B 105**(1981) 439 [INSPIRE].ADSGoogle Scholar - [74]W.J. Marciano and G. Senjanović,
*Predictions of supersymmetric grand unified theories*,*Phys. Rev.***D 25**(1982) 3092 [INSPIRE].ADSGoogle Scholar - [75]M. Einhorn and D. Jones,
*The weak mixing angle and unification mass in supersymmetric*SU(5),*Nucl. Phys.***B 196**(1982) 475 [INSPIRE].ADSCrossRefGoogle Scholar - [76]U. Amaldi, W. de Boer and H. Furstenau,
*Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP*,*Phys. Lett.***B 260**(1991) 447 [INSPIRE].ADSGoogle Scholar - [77]P. Langacker and M.-X. Luo,
*Implications of precision electroweak experiments for M*_{t}*, ρ*_{0}*,*sin^{2}*θ*_{W}*and grand unification*,*Phys. Rev.***D 44**(1991) 817 [INSPIRE].ADSGoogle Scholar - [78]J.R. Ellis, S. Kelley and D.V. Nanopoulos,
*Probing the desert using gauge coupling unification*,*Phys. Lett.***B 260**(1991) 131 [INSPIRE].ADSGoogle Scholar - [79]A. Rossi,
*Supersymmetric seesaw without singlet neutrinos: neutrino masses and lepton flavor violation*,*Phys. Rev.***D 66**(2002) 075003 [hep-ph/0207006] [INSPIRE].ADSGoogle Scholar - [80]M.R. Buckley and H. Murayama,
*How can we test seesaw experimentally?*,*Phys. Rev. Lett.***97**(2006) 231801 [hep-ph/0606088] [INSPIRE].ADSCrossRefGoogle Scholar - [81]M. Hirsch, S. Kaneko and W. Porod,
*Supersymmetric seesaw type. II. LHC and lepton flavour violating phenomenology*,*Phys. Rev.***D 78**(2008) 093004 [arXiv:0806.3361] [INSPIRE].ADSGoogle Scholar - [82]J. Esteves et al.,
*Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity*,*JHEP***05**(2009) 003 [arXiv:0903.1408] [INSPIRE].ADSCrossRefGoogle Scholar - [83]F. Borzumati and T. Yamashita,
*Minimal supersymmetric*SU(5)*model with nonrenormalizable operators: seesaw mechanism and violation of flavour and CP*,*Prog. Theor. Phys.***124**(2010) 761 [arXiv:0903.2793] [INSPIRE].ADSMATHCrossRefGoogle Scholar - [84]J. Esteves, J. Romao, M. Hirsch, F. Staub and W. Porod,
*Supersymmetric type-III seesaw: lepton flavour violating decays and dark matter*,*Phys. Rev.***D 83**(2011) 013003 [arXiv:1010.6000] [INSPIRE].ADSGoogle Scholar - [85]C. Biggio and L. Calibbi,
*Phenomenology of SUSY*SU(5)*with type-I+III seesaw*,*JHEP***10**(2010) 037 [arXiv:1007.3750] [INSPIRE].ADSCrossRefGoogle Scholar - [86]C. Biggio, L. Calibbi, A. Masiero and S.K. Vempati,
*Postcards from oases in the desert: phenomenology of SUSY with intermediate scales*,*JHEP***08**(2012) 150 [arXiv:1205.6817] [INSPIRE].ADSCrossRefGoogle Scholar - [87]M. Hirsch, W. Porod, C. Weiss and F. Staub,
*Supersymmetric type-III seesaw: lepton flavour violation and LHC phenomenology*,*Phys. Rev.***D 87**(2013) 013010 [arXiv:1211.0289] [INSPIRE].ADSGoogle Scholar - [88]P. Fileviez Perez and S. Spinner,
*The adjoint MSSM: Higgs mass and perturbativity*, arXiv:1209.5769 [INSPIRE]. - [89]L. Calibbi, L. Ferretti, A. Romanino and R. Ziegler,
*Gauge coupling unification, the GUT scale and magic fields*,*Phys. Lett.***B 672**(2009) 152 [arXiv:0812.0342] [INSPIRE].ADSGoogle Scholar - [90]S. King,
*Parametrizing the lepton mixing matrix in terms of deviations from tri-bimaximal mixing*,*Phys. Lett.***B 659**(2008) 244 [arXiv:0710.0530] [INSPIRE].ADSGoogle Scholar - [91]F. del Aguila et al.,
*Collider aspects of flavour physics at high Q*,*Eur. Phys. J.***C 57**(2008) 183 [arXiv:0801.1800] [INSPIRE].ADSGoogle Scholar - [92]F. Iocco, G. Mangano, G. Miele, O. Pisanti and P.D. Serpico,
*Primordial nucleosynthesis: from precision cosmology to fundamental physics*,*Phys. Rept.***472**(2009) 1 [arXiv:0809.0631] [INSPIRE].ADSCrossRefGoogle Scholar - [93]Particle Data Group collaboration, J. Beringer et al.,
*Review of particle physics (RPP)*,*Phys. Rev.***D 86**(2012) 010001 [INSPIRE].ADSGoogle Scholar - [94]E. Nardi and E. Roulet,
*Are exotic stable quarks cosmologically allowed?*,*Phys. Lett.***B 245**(1990) 105 [INSPIRE].ADSGoogle Scholar - [95]C.F. Berger, L. Covi, S. Kraml and F. Palorini,
*The number density of a charged relic*,*JCAP***10**(2008) 005 [arXiv:0807.0211] [INSPIRE].ADSCrossRefGoogle Scholar - [96]R. Slansky,
*Group theory for unified model building*,*Phys. Rept.***79**(1981) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [97]J. Kopp, M. Lindner, V. Niro and T.E. Underwood,
*On the consistency of perturbativity and gauge coupling unification*,*Phys. Rev.***D 81**(2010) 025008 [arXiv:0909.2653] [INSPIRE].ADSGoogle Scholar