Neutrino mass from a d=7 effective operator in a SUSY-GUT framework

  • Martin B. Krauss
  • Davide Meloni
  • Werner Porod
  • Walter Winter


Models, where neutrino mass originates from physics at the TeV scale and which are potentially testable at the LHC, need additional suppression mechanisms to describe the smallness of neutrino masses. We consider models in which neutrino mass is generated from the d = 7 operator LLH u H u H d H u in the context of SUSY-GUTs containing an SU(5) subgroup, where the d = 5 Weinberg operator can be forbidden by a discrete symmetry. That is, we identify the embeddings in GUT multiplets and their consequences for phenomenology and renormalization group evolution. We use a specific example to exemplify the challenges. In this case, additional heavy d-quarks are predicted, which are constrained by cosmology, in particular, by big bang nucleosynthesis and direct searches for heavy nuclei. We show that in the NMSSM extension of the model, the discrete symmetry needs to be broken, which can be the origin of deviations from tri-bimaximal mixings. Finally we demonstrate that our example is the only tree level decomposition which is consistent with perturbativity up to the GUT scale and neutrino mass generation by a leading d = 7 contribution.


Beyond Standard Model Neutrino Physics 


  1. [1]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  6. [6]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 of \( \sqrt{s}=7 \) TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CMS collaboration, Search for new physics in events with opposite-sign leptons, jets and missing transverse energy in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 718 (2013) 815 [arXiv:1206.3949] [INSPIRE].ADSGoogle Scholar
  8. [8]
    ATLAS collaboration, Search for new phenomena in events with three charged leptons at a center-of-mass energy of 7 TeV with the ATLAS detector, Phys. Rev. D 87 (2013) 052002 [arXiv:1211.6312] [INSPIRE].ADSGoogle Scholar
  9. [9]
    CMS collaboration, Search for supersymmetry in hadronic final states using MT2 in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].ADSGoogle Scholar
  10. [10]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    ATLAS collaboration, Search for long-lived, heavy particles in final states with a muon and multi-track displaced vertex in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 280 [arXiv:1210.7451] [INSPIRE].ADSGoogle Scholar
  12. [12]
    ATLAS collaboration, Searches for heavy long-lived sleptons and R-hadrons with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 720 (2013) 277 [arXiv:1211.1597] [INSPIRE].ADSGoogle Scholar
  13. [13]
    CMS collaboration, Search for pair production of third-generation leptoquarks and top squarks in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 110 (2013) 081801 [arXiv:1210.5629] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    CMS collaboration, Search for new physics in events with photons, jets and missing transverse energy in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 03 (2013) 111 [arXiv:1211.4784] [INSPIRE].ADSGoogle Scholar
  15. [15]
    ATLAS collaboration, Search for a heavy narrow resonance decaying to eμ, eτ, or μτ with the ATLAS detector in \( \sqrt{s}=7 \) TeV pp collisions at the LHC, arXiv:1212.1272 [INSPIRE].
  16. [16]
    P. Bechtle et al., Constrained supersymmetry after two years of LHC data: a global view with Fittino, JHEP 06 (2012) 098 [arXiv:1204.4199] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    O. Buchmueller et al., The CMSSM and NUHM1 in light of 7 TeV LHC, B sμ + μ and XENON100 data, Eur. Phys. J. C 72 (2012) 2243 [arXiv:1207.7315] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Mahbubani, M. Papucci, G. Perez, J.T. Ruderman and A. Weiler, Light non-degenerate squarks at the LHC, arXiv:1212.3328 [INSPIRE].
  20. [20]
    J.L. Feng and D. Sanford, A natural 125 GeV Higgs boson in the MSSM from focus point supersymmetry with A-terms, Phys. Rev. D 86 (2012) 055015 [arXiv:1205.2372] [INSPIRE].ADSGoogle Scholar
  21. [21]
    H. Baer, V. Barger, P. Huang and X. Tata, Natural supersymmetry: LHC, dark matter and ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    B. Allanach and B. Gripaios, Hide and seek with natural supersymmetry at the LHC, JHEP 05 (2012) 062 [arXiv:1202.6616] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Z. Han, A. Katz, M. Son and B. Tweedie, Boosting searches for natural SUSY with RPV via gluino cascades, arXiv:1211.4025 [INSPIRE].
  24. [24]
    U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.F. Gunion, Y. Jiang and S. Kraml, The constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D. Das, U. Ellwanger and A.M. Teixeira, Modified signals for supersymmetry in the NMSSM with a singlino-like LSP, JHEP 04 (2012) 067 [arXiv:1202.5244] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G.G. Ross, K. Schmidt-Hoberg and F. Staub, The generalised NMSSM at one loop: fine tuning and phenomenology, JHEP 08 (2012) 074 [arXiv:1205.1509] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. King, M. Mühlleitner, R. Nevzorov and K. Walz, Natural NMSSM Higgs bosons, Nucl. Phys. B 870 (2013) 323 [arXiv:1211.5074] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H.E. Haber and M. Sher, Higgs mass bound in E 6 based supersymmetric theories, Phys. Rev. D 35 (1987) 2206 [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Drees, Comment onHiggs boson mass bound in E 6 based supersymmetric theories’, Phys. Rev. D 35 (1987) 2910 [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Cvetič, D.A. Demir, J. Espinosa, L. Everett and P. Langacker, Electroweak breaking and the μ problem in supergravity models with an additional U(1), Phys. Rev. D 56 (1997) 2861 [Erratum ibid. D 58 (1998) 119905] [hep-ph/9703317] [INSPIRE].
  33. [33]
    Y. Zhang, H. An, X.-D. Ji and R.N. Mohapatra, Light Higgs mass bound in SUSY left-right models, Phys. Rev. D 78 (2008) 011302 [arXiv:0804.0268] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Hirsch, M. Malinsky, W. Porod, L. Reichert and F. Staub, Hefty MSSM-like light Higgs in extended gauge models, JHEP 02 (2012) 084 [arXiv:1110.3037] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. O’Leary, W. Porod and F. Staub, Mass spectrum of the minimal SUSY B-L model, JHEP 05 (2012) 042 [arXiv:1112.4600] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    I. Gogoladze, F. Nasir and Q. Shafi, Non-universal gaugino masses and natural supersymmetry, arXiv:1212.2593 [INSPIRE].
  37. [37]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSGoogle Scholar
  38. [38]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan February 13–14 1979 [INSPIRE].
  39. [39]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Print-80-0576, (1979) [INSPIRE].
  40. [40]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. de Gouvêa and J. Jenkins, A survey of lepton number violation via effective operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].ADSGoogle Scholar
  45. [45]
    F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the D = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Y. Farzan, S. Pascoli and M.A. Schmidt, Recipes and ingredients for neutrino mass at loop level, JHEP 03 (2013) 107 [arXiv:1208.2732] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P.W. Angel, N.L. Rodd and R.R. Volkas, Origin of neutrino masses at the LHC: ΔL = 2 effective operators and their ultraviolet completions, arXiv:1212.6111 [INSPIRE].
  48. [48]
    R. Mohapatra and J. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  49. [49]
    R. Hempfling, Neutrino masses and mixing angles in SUSY GUT theories with explicit R-parity breaking, Nucl. Phys. B 478 (1996) 3 [hep-ph/9511288] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    H.-P. Nilles and N. Polonsky, Supersymmetric neutrino masses, R symmetries and the generalized μ problem, Nucl. Phys. B 484 (1997) 33 [hep-ph/9606388] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    F. Borzumati, Y. Grossman, E. Nardi and Y. Nir, Neutrino masses and mixing in supersymmetric models without R-parity, Phys. Lett. B 384 (1996) 123 [hep-ph/9606251] [INSPIRE].ADSGoogle Scholar
  52. [52]
    E. Nardi, Renormalization group induced neutrino masses in supersymmetry without R-parity, Phys. Rev. D 55 (1997) 5772 [hep-ph/9610540] [INSPIRE].ADSGoogle Scholar
  53. [53]
    E. Chun, S. Kang, C. Kim and U. Lee, Supersymmetric neutrino masses and mixing with R-parity violation, Nucl. Phys. B 544 (1999) 89 [hep-ph/9807327] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Hirsch, M. Diaz, W. Porod, J. Romao and J. Valle, Neutrino masses and mixings from supersymmetry with bilinear R-parity violation: a theory for solar and atmospheric neutrino oscillations, Phys. Rev. D 62 (2000) 113008 [Erratum ibid. D 65 (2002) 119901] [hep-ph/0004115] [INSPIRE].
  55. [55]
    M. Diaz, M. Hirsch, W. Porod, J. Romao and J. Valle, Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: analytical versus numerical results, Phys. Rev. D 68 (2003) 013009 [Erratum ibid. D 71 (2005) 059904] [hep-ph/0302021] [INSPIRE].
  56. [56]
    A. Dedes, S. Rimmer and J. Rosiek, Neutrino masses in the lepton number violating MSSM, JHEP 08 (2006) 005 [hep-ph/0603225] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    B. Allanach and C. Kom, Lepton number violating mSUGRA and neutrino masses, JHEP 04 (2008) 081 [arXiv:0712.0852] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    P. Ghosh and S. Roy, Neutrino masses and mixing, lightest neutralino decays and a solution to the μ problem in supersymmetry, JHEP 04 (2009) 069 [arXiv:0812.0084] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K. Babu and S. Nandi, Natural fermion mass hierarchy and new signals for the Higgs boson, Phys. Rev. D 62 (2000) 033002 [hep-ph/9907213] [INSPIRE].ADSGoogle Scholar
  60. [60]
    M.-C. Chen, A. de Gouvêa and B.A. Dobrescu, Gauge trimming of neutrino masses, Phys. Rev. D 75 (2007) 055009 [hep-ph/0612017] [INSPIRE].ADSGoogle Scholar
  61. [61]
    I. Gogoladze, N. Okada and Q. Shafi, NMSSM and Seesaw physics at LHC, Phys. Lett. B 672 (2009) 235 [arXiv:0809.0703] [INSPIRE].ADSGoogle Scholar
  62. [62]
    G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [arXiv:0804.1753] [INSPIRE].ADSGoogle Scholar
  63. [63]
    K. Babu, S. Nandi and Z. Tavartkiladze, New mechanism for neutrino mass generation and triply charged Higgs bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [INSPIRE].ADSGoogle Scholar
  64. [64]
    P.-H. Gu, H.-J. He, U. Sarkar and X.-M. Zhang, Double type-II seesaw, baryon asymmetry and dark matter for cosmic e ± excesses, Phys. Rev. D 80 (2009) 053004 [arXiv:0906.0442] [INSPIRE].ADSGoogle Scholar
  65. [65]
    F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than D = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    I. Picek and B. Radovcic, Novel TeV-scale seesaw mechanism with Dirac mediators, Phys. Lett. B 687 (2010) 338 [arXiv:0911.1374] [INSPIRE].ADSGoogle Scholar
  67. [67]
    Y. Liao, G.-Z. Ning and L. Ren, Flavor violating transitions of charged leptons from a seesaw mechanism of dimension seven, Phys. Rev. D 82 (2010) 113003 [arXiv:1008.0117] [INSPIRE].ADSGoogle Scholar
  68. [68]
    Y. Liao, Unique neutrino mass operator at any mass dimension, Phys. Lett. B 694 (2011) 346 [arXiv:1009.1692] [INSPIRE].ADSGoogle Scholar
  69. [69]
    Y. Liao, Neutrino mass operators of dimension up to nine in two-Higgs-doublet model, Phys. Lett. B 698 (2011) 288 [arXiv:1010.5326] [INSPIRE].ADSGoogle Scholar
  70. [70]
    S. Kanemura and T. Ota, Neutrino masses from loop-induced d ≥ 7 operators, Phys. Lett. B 694 (2010) 233 [arXiv:1009.3845] [INSPIRE].ADSGoogle Scholar
  71. [71]
    M.B. Krauss, T. Ota, W. Porod and W. Winter, Neutrino mass from higher than D = 5 effective operators in SUSY and its test at the LHC, Phys. Rev. D 84 (2011) 115023 [arXiv:1109.4636] [INSPIRE].ADSGoogle Scholar
  72. [72]
    S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the scale of unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].ADSGoogle Scholar
  73. [73]
    L.E. Ibáñez and G.G. Ross, Low-energy predictions in supersymmetric grand unified theories, Phys. Lett. B 105 (1981) 439 [INSPIRE].ADSGoogle Scholar
  74. [74]
    W.J. Marciano and G. Senjanović, Predictions of supersymmetric grand unified theories, Phys. Rev. D 25 (1982) 3092 [INSPIRE].ADSGoogle Scholar
  75. [75]
    M. Einhorn and D. Jones, The weak mixing angle and unification mass in supersymmetric SU(5), Nucl. Phys. B 196 (1982) 475 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].ADSGoogle Scholar
  77. [77]
    P. Langacker and M.-X. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].ADSGoogle Scholar
  78. [78]
    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].ADSGoogle Scholar
  79. [79]
    A. Rossi, Supersymmetric seesaw without singlet neutrinos: neutrino masses and lepton flavor violation, Phys. Rev. D 66 (2002) 075003 [hep-ph/0207006] [INSPIRE].ADSGoogle Scholar
  80. [80]
    M.R. Buckley and H. Murayama, How can we test seesaw experimentally?, Phys. Rev. Lett. 97 (2006) 231801 [hep-ph/0606088] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M. Hirsch, S. Kaneko and W. Porod, Supersymmetric seesaw type. II. LHC and lepton flavour violating phenomenology, Phys. Rev. D 78 (2008) 093004 [arXiv:0806.3361] [INSPIRE].ADSGoogle Scholar
  82. [82]
    J. Esteves et al., Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity, JHEP 05 (2009) 003 [arXiv:0903.1408] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    F. Borzumati and T. Yamashita, Minimal supersymmetric SU(5) model with nonrenormalizable operators: seesaw mechanism and violation of flavour and CP, Prog. Theor. Phys. 124 (2010) 761 [arXiv:0903.2793] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  84. [84]
    J. Esteves, J. Romao, M. Hirsch, F. Staub and W. Porod, Supersymmetric type-III seesaw: lepton flavour violating decays and dark matter, Phys. Rev. D 83 (2011) 013003 [arXiv:1010.6000] [INSPIRE].ADSGoogle Scholar
  85. [85]
    C. Biggio and L. Calibbi, Phenomenology of SUSY SU(5) with type-I+III seesaw, JHEP 10 (2010) 037 [arXiv:1007.3750] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    C. Biggio, L. Calibbi, A. Masiero and S.K. Vempati, Postcards from oases in the desert: phenomenology of SUSY with intermediate scales, JHEP 08 (2012) 150 [arXiv:1205.6817] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    M. Hirsch, W. Porod, C. Weiss and F. Staub, Supersymmetric type-III seesaw: lepton flavour violation and LHC phenomenology, Phys. Rev. D 87 (2013) 013010 [arXiv:1211.0289] [INSPIRE].ADSGoogle Scholar
  88. [88]
    P. Fileviez Perez and S. Spinner, The adjoint MSSM: Higgs mass and perturbativity, arXiv:1209.5769 [INSPIRE].
  89. [89]
    L. Calibbi, L. Ferretti, A. Romanino and R. Ziegler, Gauge coupling unification, the GUT scale and magic fields, Phys. Lett. B 672 (2009) 152 [arXiv:0812.0342] [INSPIRE].ADSGoogle Scholar
  90. [90]
    S. King, Parametrizing the lepton mixing matrix in terms of deviations from tri-bimaximal mixing, Phys. Lett. B 659 (2008) 244 [arXiv:0710.0530] [INSPIRE].ADSGoogle Scholar
  91. [91]
    F. del Aguila et al., Collider aspects of flavour physics at high Q, Eur. Phys. J. C 57 (2008) 183 [arXiv:0801.1800] [INSPIRE].ADSGoogle Scholar
  92. [92]
    F. Iocco, G. Mangano, G. Miele, O. Pisanti and P.D. Serpico, Primordial nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rept. 472 (2009) 1 [arXiv:0809.0631] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  94. [94]
    E. Nardi and E. Roulet, Are exotic stable quarks cosmologically allowed?, Phys. Lett. B 245 (1990) 105 [INSPIRE].ADSGoogle Scholar
  95. [95]
    C.F. Berger, L. Covi, S. Kraml and F. Palorini, The number density of a charged relic, JCAP 10 (2008) 005 [arXiv:0807.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  97. [97]
    J. Kopp, M. Lindner, V. Niro and T.E. Underwood, On the consistency of perturbativity and gauge coupling unification, Phys. Rev. D 81 (2010) 025008 [arXiv:0909.2653] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Martin B. Krauss
    • 1
  • Davide Meloni
    • 2
  • Werner Porod
    • 1
  • Walter Winter
    • 1
  1. 1.Institut für Theoretische Physik und AstrophysikUniversität WürzburgWürzburgGermany
  2. 2.Dipartimento di Matematica e FisicaUniversità degli Studi Roma TreRomaItaly

Personalised recommendations