Advertisement

Analytical study on holographic superconductors for Born-Infeld electrodynamics in Gauss-Bonnet gravity with backreactions

  • Weiping Yao
  • Jiliang Jing
Article

Abstract

We analytically study the holographic superconductors for Born-Infeld electrodynamics in Gauss-Bonnet gravity with backreactions. We note that the analytic method is still powerful for this complex system and the results obtained by the analytical and numerical computations are consistent. We find that the critical temperature decreases with the increase of the backreactions, Gauss-Bonnet, and Born-Infeld parameters, which means that increase of the strength of these effects will make the scalar hair harder to form. Furthermore, the Gauss-Bonnet factor modifies the critical temperature more significantly than the backreaction factor. The effect of the Born-Infeld factor on the critical temperature is weaker than the backreaction factor. We also show that the critical exponent is not affected by the backreactions, Gauss-Bonnet gravity, and Born-Infeld electrodynamics.

Keywords

AdS-CFT Correspondence Black Holes 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    G.T. Horowitz, Theory of superconductivity, Lect. Notes Phys. 828 (2011) 313 [arXiv:1002.1722] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  7. [7]
    S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121 [hep-th/0505189] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    X.-H. Ge, B. Wang, S.-F. Wu and G.-H. Yang, Analytical study on holographic superconductors in external magnetic field, JHEP 08 (2010) 108 [arXiv:1002.4901] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    E. Nakano and W.-Y. Wen, Critical magnetic field in a holographic superconductor, Phys. Rev. D 78 (2008) 046004 [arXiv:0804.3180] [INSPIRE].ADSGoogle Scholar
  14. [14]
    I. Amado, M. Kaminski and K. Landsteiner, Hydrodynamics of holographic superconductors, JHEP 05 (2009) 021 [arXiv:0903.2209] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    G. Koutsoumbas, E. Papantonopoulos and G. Siopsis, Exact gravity dual of a gapless superconductor, JHEP 07 (2009) 026 [arXiv:0902.0733] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    O.C. Umeh, Scanning the parameter space of holographic superconductors, JHEP 08 (2009) 062 [arXiv:0907.3136] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Sonner, A rotating holographic superconductor, Phys. Rev. D 80 (2009) 084031 [arXiv:0903.0627] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Jing and S. Chen, Holographic superconductors in the Born-Infeld electrodynamics, Phys. Lett. B 686 (2010) 68 [arXiv:1001.4227] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    S. Franco, A.M. Garcia-Garcia and D. Rodriguez-Gomez, A holographic approach to phase transitions, Phys. Rev. D 81 (2010) 041901 [arXiv:0911.1354] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    C.P. Herzog, An analytic holographic superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R. Konoplya and A. Zhidenko, Holographic conductivity of zero temperature superconductors, Phys. Lett. B 686 (2010) 199 [arXiv:0909.2138] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    G. Siopsis and J. Therrien, Analytic calculation of properties of holographic superconductors, JHEP 05 (2010) 013 [arXiv:1003.4275] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Maeda, M. Natsuume and T. Okamura, Universality class of holographic superconductors, Phys. Rev. D 79 (2009) 126004 [arXiv:0904.1914] [INSPIRE].ADSGoogle Scholar
  25. [25]
    R.-G. Cai, Z.-Y. Nie and H.-Q. Zhang, Holographic p-wave superconductors from Gauss-Bonnet gravity, Phys. Rev. D 82 (2010) 066007 [arXiv:1007.3321] [INSPIRE].ADSGoogle Scholar
  26. [26]
    Q. Pan, B. Wang, E. Papantonopoulos, J. Oliveira and A. Pavan, Holographic superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81 (2010) 106007 [arXiv:0912.2475] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Q. Pan and B. Wang, General holographic superconductor models with Gauss-Bonnet corrections, Phys. Lett. B 693 (2010) 159 [arXiv:1005.4743] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    J. Jing, L. Wang, Q. Pan and S. Chen, Holographic superconductors in Gauss-Bonnet gravity with Born-Infeld electrodynamics, Phys. Rev. D 83 (2011) 066010 [arXiv:1012.0644] [INSPIRE].ADSGoogle Scholar
  29. [29]
    D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.T. Wheeler, Symmetric solutions to the Gauss-Bonnet extended Einstein equations, Nucl. Phys. B 268 (1986) 737 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Kanno, A note on Gauss-Bonnet holographic superconductors, Class. Quant. Grav. 28 (2011) 127001 [arXiv:1103.5022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    Q. Pan, J. Jing and B. Wang, Holographic superconductor models with the Maxwell field strength corrections, Phys. Rev. D 84 (2011) 126020 [arXiv:1111.0714] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934) 425 [INSPIRE].ADSGoogle Scholar
  35. [35]
    G. Gibbons and D. Rasheed, Electric-magnetic duality rotations in nonlinear electrodynamics, Nucl. Phys. B 454 (1995) 185 [hep-th/9506035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    B. Hoffmann, Gravitational and electromagnetic mass in the Born-Infeld electrodynamics, Phys. Rev. 47 (1935) 877 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W. Heisenberg and H. Euler, Consequences of Diracs theory of positrons (in German), Z. Phys. 98 (1936) 714 [physics/0605038] [INSPIRE].
  38. [38]
    H. de Oliveira, Nonlinear charged black holes, Class. Quant. Grav. 11 (1994) 1469 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    O. Mišković and R. Olea, Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space, Phys. Rev. D 83 (2011) 024011 [arXiv:1009.5763] [INSPIRE].ADSGoogle Scholar
  40. [40]
    R.-G. Cai, Z.-Y. Nie and H.-Q. Zhang, Holographic p-wave superconductors from Gauss-Bonnet gravity, Phys. Rev. D 82 (2010) 066007 [arXiv:1007.3321] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J. Jing, L. Wang, Q. Pan and S. Chen, Holographic superconductors in Gauss-Bonnet gravity with Born-Infeld electrodynamics, Phys. Rev. D 83 (2011) 066010 [arXiv:1012.0644] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Gangopadhyay and D. Roychowdhury, Analytic study of properties of holographic superconductors in Born-Infeld electrodynamics, JHEP 05 (2012) 002 [arXiv:1201.6520] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Jing and S. Chen, Holographic superconductors in the Born-Infeld electrodynamics, Phys. Lett. B 686 (2010) 68 [arXiv:1001.4227] [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    Y. Liu, Y. Peng and B. Wang, Gauss-Bonnet holographic superconductors in Born-Infeld electrodynamics with backreactions, arXiv:1202.3586 [INSPIRE].
  45. [45]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    X.-H. Ge, Analytical calculation on critical magnetic field in holographic superconductors with backreaction, Prog. Theor. Phys. 128 (2012) 1211 [arXiv:1105.4333] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute of Physics and Department of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of EducationHunan Normal UniversityChangshaP.R. China

Personalised recommendations