Advertisement

Membrane instantons from a semiclassical TBA

  • Flavio Calvo
  • Marcos Mariño
Article

Abstract

The partition function on the three-sphere of ABJM theory contains non-perturbative corrections which correspond to membrane instantons in M-theory. These corrections can be studied in the Fermi gas approach to the partition function, and they are encoded in a system of integral equations of the TBA type. We study a semiclassical or WKB expansion of this TBA system in the ABJM coupling k, which corresponds to the strong coupling expansion of the type IIA string. This allows us to study membrane instanton corrections in M-theory at high order in the WKB expansion. Using these WKB results, we verify the conjectures for the form of the one-instanton correction at finite k proposed recently by Hatsuda, Moriyama and Okuyama (HMO), which are in turn based on a conjectural cancellation of divergences between worldsheet instantons and membrane instantons. The HMO cancellation mechanism is important since it shows in a precise, quantitative way, that the perturbative genus expansion is radically insufficient at strong coupling, and that non-perturbative membrane effects are essential to make sense of the theory. We propose analytic expressions in k for the full two-membrane instanton correction and for higher-order non-perturbative terms, which pass many consistency checks and provide further evidence for the HMO mechanism.

Keywords

AdS-CFT Correspondence Bethe Ansatz M-Theory 

References

  1. [1]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  5. [5]
    O. Aharony, O. Bergman, D.L. Jafferis and J.M. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Bhattacharyya, A. Grassi, M. Mariño and A. Sen, A one-loop test of quantum supergravity, arXiv:1210.6057 [INSPIRE].
  8. [8]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. (2012) P03001 [arXiv:1110.4066] [INSPIRE].
  9. [9]
    H. Fuji, S. Hirano and S. Moriyama, Summing up all genus free energy of ABJM matrix model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string theory, Nucl. Phys. B 456 (1995) 130 [hep-th/9507158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Cagnazzo, D. Sorokin and L. Wulff, String instanton in AdS 4 × CP 3, JHEP 05 (2010) 009 [arXiv:0911.5228] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton effects in ABJM theory from Fermi gas approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Cecotti, P. Fendley, K.A. Intriligator and C. Vafa, A new supersymmetric index, Nucl. Phys. B 386 (1992) 405 [hep-th/9204102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    P. Fendley and H. Saleur, N = 2 supersymmetry, Painlevé III and exact scaling functions in 2D polymers, Nucl. Phys. B 388 (1992) 609 [hep-th/9204094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A.B. Zamolodchikov, Painlevé III and 2D polymers, Nucl. Phys. B 432 (1994) 427 [hep-th/9409108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact results on the ABJM Fermi gas, JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Putrov and M. Yamazaki, Exact ABJM partition function from TBA, Mod. Phys. Lett. A 27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative tests of three-dimensional dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    K. Okuyama, A note on the partition function of ABJM theory on S 3, Prog. Theor. Phys. 127 (2012) 229 [arXiv:1110.3555] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  21. [21]
    M. Hanada et al., Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant, JHEP 05 (2012) 121 [arXiv:1202.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].
  23. [23]
    M. Mariño and P. Putrov, Exact results in ABJM theory from topological strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C.A. Tracy and H. Widom, Proofs of two conjectures related to the thermodynamic Bethe ansatz, Commun. Math. Phys. 179 (1996) 667 [solv-int/9509003] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    P. Fendley, Airy functions in the thermodynamic Bethe ansatz, Lett. Math. Phys. 49 (1999) 229 [hep-th/9906114] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    J.A. Harvey and G.W. Moore, Superpotentials and membrane instantons, hep-th/9907026 [INSPIRE].
  27. [27]
    M. Mariño, Nonperturbative effects and nonperturbative definitions in matrix models and topological strings, JHEP 12 (2008) 114 [arXiv:0805.3033] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Mariño, Topological strings at strong string coupling, talk given at the Banff Workshop. New Recursion Formulae and Integrability for Calabi-Yau Spaces, Banff Canada (2011), http://www.birs.ca/events/2011/5-day-workshops/11w5114/videos.
  29. [29]
    N.N. Lebedev, Special functions and their applications, Dover Publications (1962).Google Scholar
  30. [30]
    A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and series. Vol. 3: More special functions, CRC (1990).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Département de Physique Théorique et Section de MathématiquesUniversité de GenèveGenèveSwitzerland

Personalised recommendations