A realistic model of neutrino masses with a large neutrinoless double beta decay rate

  • Francisco del Aguila
  • Alberto Aparici
  • Subhaditya Bhattacharya
  • Arcadi Santamaria
  • Jose Wudka


The minimal Standard Model extension with the Weinberg operator does accommodate the observed neutrino masses and mixing, but predicts a neutrinoless double beta (0νββ) decay rate proportional to the effective electron neutrino mass, which can be then arbitrarily small within present experimental limits. However, in general 0νββ decay can have an independent origin and be near its present experimental bound; whereas neutrino masses are generated radiatively, contributing negligibly to 0νββ decay. We provide a realization of this scenario in a simple, well defined and testable model, with potential LHC effects and calculable neutrino masses, whose two-loop expression we derive exactly. We also discuss the connection of this model to others that have appeared in the literature, and remark on the significant differences that result from various choices of quantum number assignments and symmetry assumptions. In this type of models lepton flavor violating rates are also preferred to be relatively large, at the reach of foreseen experiments. Interestingly enough, in our model this stands for a large third mixing angle, \( {\text{si}}{{\text{n}}^{{2}}}{\theta_{{{13}}}}{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{ > }}0.00{8} \), when μeee is required to lie below its present experimental limit.


Neutrino Physics Higgs Physics Beyond Standard Model 


  1. [1]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  2. [2]
    M. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Mohapatra et al., Theory of neutrinos: a white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Altarelli and F. Feruglio, Neutrino masses and mixings: A theoretical perspective, Phys. Rept. 320 (1999) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  6. [6]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    W. Furry, On transition probabilities in double beta-disintegration, Phys. Rev. 56 (1939) 1184 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Branco, R.G. Felipe and F. Joaquim, Leptonic CP-violation, arXiv:1111.5332 [INSPIRE].
  12. [12]
    J. Vergados, The neutrinoless double beta decay from a modern perspective, Phys. Rept. 361 (2002) 1 [hep-ph/0209347] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Schechter and J. Valle, Neutrinoless double beta decay in SU(2) × U(1) theories, Phys. Rev. D 25 (1982) 2951 [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Barabash, Double beta decay experiments, Phys. Part. Nucl. 42 (2011) 613 [arXiv:1107.5663] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    I. Avignone, Frank T., S.R. Elliott and J. Engel, Double beta decay, majorana neutrinos and neutrino mass, Rev. Mod. Phys. 80 (2008) 481 [arXiv:0708.1033] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, Effective lagrangian approach to neutrinoless double beta decay and neutrino masses, arXiv:1204.5986 [INSPIRE].
  17. [17]
    K. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    K.-w. Choi, K.S. Jeong and W.Y. Song, Operator analysis of neutrinoless double beta decay, Phys. Rev. D 66 (2002) 093007 [hep-ph/0207180] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Engel and P. Vogel, Effective operators for double beta decay, Phys. Rev. C 69 (2004) 034304 [nucl-th/0311072] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. de Gouvˆea and J. Jenkins, A survey of lepton number violation via effective operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].ADSGoogle Scholar
  21. [21]
    C.-S. Chen, C. Geng and J. Ng, Unconventional neutrino mass generation, neutrinoless double beta decays and collider phenomenology, Phys. Rev. D 75 (2007) 053004 [hep-ph/0610118] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C.-S. Chen, C.-Q. Geng, J.N. Ng and J.M. Wu, Testing radiative neutrino mass generation at the LHC, JHEP 08 (2007) 022 [arXiv:0706.1964] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Mohapatra and P. Pal, Massive neutrinos in physics and astrophysics, Lectures Notes in Physics voume 60, World Scientific, Singapore (1998).Google Scholar
  24. [24]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Ibarra, E. Molinaro and S. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν -decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Mitra, G. Senjanović and F. Vissani, Neutrinoless double beta decay and heavy sterile neutrinos, Nucl. Phys. B 856 (2012) 26 [arXiv:1108.0004] [INSPIRE].
  27. [27]
    M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703-703] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  30. [30]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Duerr, M. Lindner and A. Merle, On the quantitative impact of the Schechter-Valle theorem, JHEP 06 (2011) 091 [arXiv:1105.0901] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    K. Babu, Model of ’calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSGoogle Scholar
  34. [34]
    Y. Zeldovich, I.Y. Kobzarev and L. Okun, Cosmological consequences of the spontaneous breakdown of discrete symmetry, Zh. Eksp. Teor. Fiz. 67 (1974) 3 [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Vilenkin, Cosmic strings and domain walls, Phys. Rept. 121 (1985) 263 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    R.E. Shrock and M. Suzuki, Invisible decays of Higgs bosons, Phys. Lett. B 110 (1982) 250 [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Bertolini and A. Santamaria, The stability of the VEV hierarchy and Higgs invisibility in Majoron models, Phys. Lett. B 213 (1988) 487 [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Aparici, K. Kim, A. Santamaria and J. Wudka, Right-handed neutrino magnetic moments, Phys. Rev. D 80 (2009) 013010 [arXiv:0904.3244] [INSPIRE].ADSGoogle Scholar
  39. [39]
    Y. Chikashige, R.N. Mohapatra and R. Peccei, Are there real goldstone bosons associated with broken lepton number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].ADSGoogle Scholar
  40. [40]
    K. Ghosh, B. Mukhopadhyaya and U. Sarkar, Signals of an invisibly decaying Higgs in a scalar dark matter scenario: a study for the Large Hadron Collider, Phys. Rev. D 84 (2011) 015017 [arXiv:1105.5837] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Choi and A. Santamaria, Majorons and supernova cooling, Phys. Rev. D 42 (1990) 293 [INSPIRE].ADSGoogle Scholar
  42. [42]
    Y. Chikashige, R.N. Mohapatra and R. Peccei, Spontaneously broken lepton number and cosmological constraints on the neutrino mass spectrum, Phys. Rev. Lett. 45 (1980) 1926 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K. Choi and A. Santamaria, 17-KeV neutrino in a singlet-triplet Majoron model, Phys. Lett. B 267 (1991) 504 [INSPIRE].ADSGoogle Scholar
  44. [44]
    P.-H. Gu, E. Ma and U. Sarkar, Pseudo-Majoron as dark matter, Phys. Lett. B 690 (2010) 145 [arXiv:1004.1919] [INSPIRE].ADSGoogle Scholar
  45. [45]
    L. Basso, Phenomenology of the minimal B-L extension of the standard model at the LHC, arXiv:1106.4462 [INSPIRE].
  46. [46]
    W. Konetschny and W. Kummer, Nonconservation of total lepton number with scalar bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].ADSGoogle Scholar
  47. [47]
    T. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  48. [48]
    J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  49. [49]
    H. Pas, M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, A superformula for neutrinoless double beta decay. 2. The short range part, Phys. Lett. B 498 (2001) 35 [hep-ph/0008182] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, Prospects for the Zee-Babu Model at the CERN LHC and low energy experiments, Phys. Rev. D 77 (2008) 093013 [arXiv:0711.0483] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Raidal and A. Santamaria, Muon electron conversion in nuclei versus μeγ: an effective field theory point of view, Phys. Lett. B 421 (1998) 250 [hep-ph/9710389] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S.M. Bilenky, J. Hosek and S. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].ADSGoogle Scholar
  53. [53]
    S.M. Bilenky and S. Petcov, Massive neutrinos and neutrino oscillations, Rev. Mod. Phys. 59 (1987) 671 [Erratum ibid. 61 (1989) 169] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum to ‘global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Double Chooz collaboration, First results from the Double Chooz experiment, presented at LowNu2011, November 9–12, Seoul, Korea (2011),
  57. [57]
    G. Gelmini and M. Roncadelli, Left-handed neutrino mass scale and spontaneously broken lepton number, Phys. Lett. B 99 (1981) 411 [INSPIRE].ADSGoogle Scholar
  58. [58]
    E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716 [hep-ph/9802445] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Gunion, J. Grifols, A. Mendez, B. Kayser and F.I. Olness, Higgs bosons in left-right symmetric models, Phys. Rev. D 40 (1989) 1546 [INSPIRE].ADSGoogle Scholar
  60. [60]
    K. Huitu, J. Maalampi, A. Pietila and M. Raidal, Doubly charged Higgs at LHC, Nucl. Phys. B 487 (1997) 27 [hep-ph/9606311] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J. Gunion, C. Loomis and K. Pitts, Searching for doubly charged Higgs bosons at future colliders, in the proceedings of the DPF/DPB summer study on new directions for high-energy physics (Snowmass96), June 25–July 12, Snowmass, Colorado U.S.A. (1996), eConf C 960625 (1996) LTH096 [hep-ph/9610237] [INSPIRE].
  62. [62]
    A. Akeroyd and M. Aoki, Single and pair production of doubly charged Higgs bosons at hadron colliders, Phys. Rev. D 72 (2005) 035011 [hep-ph/0506176] [INSPIRE].ADSGoogle Scholar
  63. [63]
    G. Azuelos, K. Benslama and J. Ferland, Prospects for the search for a doubly-charged Higgs in the left-right symmetric model with ATLAS, J. Phys. G 32 (2006) 73 [hep-ph/0503096] [INSPIRE].ADSGoogle Scholar
  64. [64]
    F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Akeroyd, C.-W. Chiang and N. Gaur, Leptonic signatures of doubly charged Higgs boson production at the LHC, JHEP 11 (2010) 005 [arXiv:1009.2780] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    B. Dion, T. Gregoire, D. London, L. Marleau and H. Nadeau, Bilepton production at hadron colliders, Phys. Rev. D 59 (1999) 075006 [hep-ph/9810534] [INSPIRE].ADSGoogle Scholar
  67. [67]
    F. Cuypers and S. Davidson, Bileptons: present limits and future prospects, Eur. Phys. J. C 2 (1998) 503 [hep-ph/9609487] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    F. del Aguila, J. Aguilar-Saavedra and J. de Blas, Trilepton signals: the golden channel for seesaw searches at LHC, Acta Phys. Polon. B 40 (2009) 2901 [arXiv:0910.2720] [INSPIRE].ADSGoogle Scholar
  69. [69]
    F. del Aguila, J.A. Aguilar-Saavedra and J. de Blas, New neutrino interactions at large colliders, PoS(ICHEP 2010)296 [arXiv:1012.1327] [INSPIRE].
  70. [70]
    P. Nath et al., The hunt for new physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [INSPIRE].CrossRefGoogle Scholar
  71. [71]
    CMS collaboration, Inclusive search for doubly charged Higgs in leptonic final states at \( \sqrt {s} = 7 \) TeV, PAS-HIG-11-007 (2011).Google Scholar
  72. [72]
    DELPHI collaboration, J. Abdallah et al., Search for doubly charged Higgs bosons at LEP-2, Phys. Lett. B 552 (2003) 127 [hep-ex/0303026] [INSPIRE].ADSGoogle Scholar
  73. [73]
    OPAL collaboration, G. Abbiendi et al., Search for doubly charged Higgs bosons with the OPAL detector at LEP, Phys. Lett. B 526 (2002) 221 [hep-ex/0111059] [INSPIRE].ADSGoogle Scholar
  74. [74]
    L3 collaboration, P. Achard et al., Search for doubly charged Higgs bosons at LEP, Phys. Lett. B 576 (2003) 18 [hep-ex/0309076] [INSPIRE].ADSGoogle Scholar
  75. [75]
    OPAL collaboration, G. Abbiendi et al., Search for the single production of doubly charged Higgs bosons and constraints on their couplings from Bhabha scattering, Phys. Lett. B 577 (2003) 93 [hep-ex/0308052] [INSPIRE].ADSGoogle Scholar
  76. [76]
    D0 collaboration, V. Abazov et al., Search for doubly-charged Higgs boson pair production in the decay to μ + μ + μ μ in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 93 (2004) 141801 [hep-ex/0404015] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    CDF collaboration, D. Acosta et al., Search for doubly-charged Higgs bosons decaying to dileptons in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 93 (2004) 221802 [hep-ex/0406073] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    CDF collaboration, D. Acosta et al., Search for long-lived doubly-charged Higgs bosons in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 95 (2005) 071801 [hep-ex/0503004] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A. Melfo, M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, Type II seesaw at LHC: the roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].ADSGoogle Scholar
  80. [80]
    V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-right symmetry: from LHC to neutrinoless double beta decay, Phys. Rev. Lett. 106 (2011) 151801 [arXiv:1011.3522] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    P.H. Frampton, S.L. Glashow and D. Marfatia, Zeroes of the neutrino mass matrix, Phys. Lett. B 536 (2002) 79 [hep-ph/0201008] [INSPIRE].ADSGoogle Scholar
  82. [82]
    Z.-z. Xing, Texture zeros and Majorana phases of the neutrino mass matrix, Phys. Lett. B 530 (2002) 159 [hep-ph/0201151] [INSPIRE].ADSGoogle Scholar
  83. [83]
    H. Fritzsch, Z.-z. Xing and S. Zhou, Two-zero textures of the Majorana neutrino mass matrix and current experimental tests, JHEP 09 (2011) 083 [arXiv:1108.4534] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    B. Brahmachari and E. Ma, Neutrinoless double beta decay with negligible neutrino mass, Phys. Lett. B 536 (2002) 259 [hep-ph/0202262] [INSPIRE].ADSGoogle Scholar
  85. [85]
    ATLAS collaboration, Combined standard model higgs boson searches with up to 2.3 fb −1 of pp collisions at \( \sqrt {s} = 7 \) TeV at the LHC, ATLAS-CONF-2011-157 (2011).Google Scholar
  86. [86]
    CMS collaboration, Combined standard model Higgs boson searches with up to 2.3 inverse femtobarns of pp collision data at \( \sqrt {s} = 7 \) TeV at the LHC, PAS-HIG-11-023 (2011).Google Scholar
  87. [87]
    F. del Aguila and J. de Blas, Electroweak constraints on new physics, arXiv:1105.6103 [INSPIRE].
  88. [88]
    F. del Aguila, J. Aguilar-Saavedra, J. de Blas and M. P´erez-Victoria, Electroweak constraints on see-saw messengers and their implications for LHC, arXiv:0806.1023 [INSPIRE].
  89. [89]
    M. Einhorn, D. Jones and M. Veltman, Heavy particles and the ρ parameter in the standard model, Nucl. Phys. B 191 (1981) 146 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    M. Golden, An upper limit on the masses of the charged Higgs bosons in the Gelmini-Roncadelli model, Phys. Lett. B 169 (1986) 248 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Francisco del Aguila
    • 1
  • Alberto Aparici
    • 2
  • Subhaditya Bhattacharya
    • 3
  • Arcadi Santamaria
    • 2
  • Jose Wudka
    • 3
  1. 1.CAFPE and Departamento de Fisica Teorica y del CosmosUniversidad de GranadaGranadaSpain
  2. 2.Departament de Fisica TeoricaUniversitat de Valencia and IFIC, Universitat de Valencia-CSICBurjassotSpain
  3. 3.Department of Physics and AstronomyUniversity of CaliforniaRiversideU.S.A.

Personalised recommendations