Incompressible fluids of the de Sitter horizon and beyond

  • Dionysios Anninos
  • Tarek Anous
  • Irene Bredberg
  • Gim Seng Ng


There are (at least) two surfaces of particular interest in eternal de Sitter space. One is the timelike hypersurface constituting the lab wall of a static patch observer and the other is the future boundary of global de Sitter space. We study both linear and non-linear deformations of four-dimensional de Sitter space which obey the Einstein equation. Our deformations leave the induced conformal metric and trace of the extrinsic curvature unchanged for a fixed hypersurface. This hypersurface is either timelike within the static patch or spacelike in the future diamond. We require the deformations to be regular at the future horizon of the static patch observer. For linearized perturbations in the future diamond, this corresponds to imposing incoming flux solely from the future horizon of a single static patch observer. When the slices are arbitrarily close to the cosmological horizon, the finite deformations are characterized by solutions to the incompressible Navier- Stokes equation for both spacelike and timelike hypersurfaces. We then study, at the level of linearized gravity, the change in the discrete dispersion relation as we push the timelike hypersurface toward the worldline of the static patch. Finally, we study the spectrum of linearized solutions as the spacelike slices are pushed to future infinity and relate our calculations to analogous ones in the context of massless topological black holes in AdS4.


Cosmology of Theories beyond the SM AdS-CFT Correspondence Classical Theories of Gravity Black Holes 


  1. [1]
    Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998)1009 [astro-ph/9805201] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D 15 (1977) 2738.MathSciNetADSGoogle Scholar
  4. [4]
    N. Goheer, M. Kleban and L. Susskind, The trouble with de Sitter space, JHEP 07 (2003)056 [ hep-th/0212209] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    T. Banks, Some thoughts on the quantum theory of de Sitter space, astro-ph/0305037 [INSPIRE].
  6. [6]
    M.K. Parikh and E.P. Verlinde, de Sitter holography with a finite number of states, JHEP 01(2005) 054 [hep-th/0410227] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    T. Banks, B. Fiol and A. Morisse, Towards a quantum theory of de Sitter space, JHEP 12(2006) 004 [hep-th/0609062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    T. Banks, W. Fischler and S. Paban, Recurrent nightmares? Measurement theory in de Sitter space, JHEP 12 (2002) 062 [hep-th/0210160] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    L. Susskind, Addendum to fast scramblers, arXiv:1101.6048 [INSPIRE].
  10. [10]
    M.K. Parikh and J.P. van der Schaar, Not one bit of de Sitter information, JHEP 09 (2008)041 [arXiv:0804.0231] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Castro, N. Lashkari and A. Maloney, A de Sitter Farey tail, Phys. Rev. D 83 (2011)124027 [arXiv:1103.4620] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Alishahiha, A. Karch, E. Silverstein and D. Tong, The dS/dS correspondence, AIP Conf. Proc. 743 (2005) 393 [hep-th/0407125] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    E. Silverstein, AdS and dS entropy from string junctions: or, the Function of junction conjunctions, in From fields to strings, volume 3, M. Shifman ed., World Scientific, Singapore (2005), hep-th/0308175 [INSPIRE].
  14. [14]
    D. Anninos, G.S. Ng and A. Strominger, Future boundary conditions in de Sitter space, JHEP 02 (2012) 032 [arXiv:1106.1175] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D. Anninos, S.A. Hartnoll and D.M. Hofman, Static patch solipsism: conformal symmetry of the de Sitter worldline, Class. Quant. Grav. 29 (2012) 075002 [arXiv:1109.4942] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    T. Damour, Quelques propri´et´es m´ecaniques, ´electromagn´etiques, thermodynamiques et quantiques des trous noirs”, Ph.D. thesis, Universit´e, Pierre et Marie Curie, Paris VI, Paris, France (1979).Google Scholar
  17. [17]
    T. Damour, Surface effects in black hole physics, in the proceedings of the 2nd Marcel Grossmann meeting on general relativity, R. Ruffini ed., North-Holland, The Netherlands (1982).Google Scholar
  18. [18]
    R. Price and K. Thorne, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev. D 33 (1986) 915 [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    J. Khoury and M. Parikh, Mach’s holographic principle, Phys. Rev. D 80 (2009) 084004[hep-th/0612117] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes to Einstein, arXiv:1101.2451 [INSPIRE].
  22. [22]
    I. Bredberg and A. Strominger, Black holes as incompressible fluids on the sphere, JHEP 05(2012) 043 [arXiv:1106.3084] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Policastro, D. Son and A. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960.MathSciNetADSGoogle Scholar
  27. [27]
    A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    C. Hull, Timelike T duality, de Sitter space, large-N gauge theories and topological field theory, JHEP 07 (1998) 021 [hep-th/9806146] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].
  30. [30]
    J.M. Maldacena, Non-gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
  32. [32]
    D. Anninos, G.S. Ng and A. Strominger, Asymptotic symmetries and charges in de Sitter space, Class. Quant. Grav. 28 (2011) 175019 [arXiv:1009.4730] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    P. McFadden and K. Skenderis, Holography for cosmology, Phys. Rev. D 81 (2010) 021301[arXiv:0907.5542] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, arXiv:1108.5735 [INSPIRE].
  35. [35]
    R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev. D 65 (2002) 104039 [hep-th/0112218] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    D. Anninos, S. de Buyl and S. Detournay, Holography for a de Sitter-Esque geometry, JHEP 05 (2011) 003 [arXiv:1102.3178] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Compère, P. McFadden, K. Skenderis and M. Taylor, The holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H. Kodama, A. Ishibashi and O. Seto, Brane world cosmology: gauge invariant formalism for perturbation, Phys. Rev. D 62 (2000) 064022 [ hep-th/0004160] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    H. Kodama and A. Ishibashi, A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys. 110 (2003) 701[hep-th/0305147] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  40. [40]
    M. Abramowitz and I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publication, New York U.S.A. (1972).MATHGoogle Scholar
  41. [41]
    P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Lopez-Ortega, Quasinormal modes of D-dimensional de Sitter spacetime, Gen. Rel. Grav.38 (2006) 1565 [gr-qc/0605027] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  43. [43]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].ADSGoogle Scholar
  44. [44]
    D. Forster, D.R. Nelson and M.J. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16 (1977) 732 [INSPIRE].MathSciNetADSGoogle Scholar
  45. [45]
    I. Booth and R.B. Mann, Cosmological pair production of charged and rotating black holes, Nucl. Phys. B 539 (1999) 267 [gr-qc/9806056] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D. Anninos and T. Hartman, Holography at an extremal de Sitter horizon, JHEP 03 (2010)096 [arXiv:0910.4587] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D. Anninos and T. Anous, A de Sitter hoedown, JHEP 08 (2010) 131 [arXiv:1002.1717] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    D. Birmingham, Topological black holes in anti-de Sitter space, Class. Quant. Grav. 16 (1999) 1197 [hep-th/9808032] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  49. [49]
    D. Birmingham and S. Mokhtari, Exact gravitational quasinormal frequencies of topological black holes, Phys. Rev. D 74 (2006) 084026 [hep-th/0609028] [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    R. Emparan, AdS/CFT duals of topological black holes and the entropy of zero energy states, JHEP 06 (1999) 036 [hep-th/9906040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    G. Horowitz, A. Lawrence and E. Silverstein, Insightful D-branes, JHEP 07 (2009) 057[arXiv:0904.3922] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    A. Erdelyi, Higher transcendental functions. Volume 1, McGraw-Hill, New York U.S.A. (1955).Google Scholar
  53. [53]
    Z.X. Wang and D.R. Guo, Special functions, World Scientific, Singapore (1989).CrossRefGoogle Scholar
  54. [54]
    C. Eling, I. Fouxon and Y. Oz, The Incompressible Navier-Stokes Equations From Membrane Dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Dionysios Anninos
    • 1
  • Tarek Anous
    • 2
  • Irene Bredberg
    • 2
  • Gim Seng Ng
    • 2
  1. 1.Department of PhysicsStanford UniversityStanfordU.S.A.
  2. 2.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.

Personalised recommendations