Once more on the Witten index of 3d supersymmetric YM-CS theory

  • A.V. Smilga
Open Access


The problem of counting the vacuum states in the supersymmetric 3d Yang- Mills-Chern-Simons theory is reconsidered. We resolve the controversy between its original calculation in [1] at large volumes g 2L ≫ 1 and the calculation based on the evaluation of the effective Lagrangian in the small volume limit, g 2L ≪ 1 [2]. We show that the latter calculation suffers from uncertainties associated with the singularities in the moduli space of classical vacua where the Born-Oppenheimer approximation breaks down. We also show that these singularities can be accurately treated in the Hamiltonian Born-Oppenheimer method, where one has to match carefully the effective wave functions on the Abelian valley and the wave functions of reduced non-Abelian QM theory near the singularities. This gives the same result as original Witten’s calculation.


Supersymmetric gauge theory Field Theories in Lower Dimensions Chern- Simons Theories 


  1. [1]
    E. Witten, Supersymmetric index of three-dimensional gauge theory, in The many faces of the superworld, M.A. Shifman and Y. Golfand ed., World Scientific, Singapore (1999), hep-th/9903005 [INSPIRE].Google Scholar
  2. [2]
    A. Smilga, Witten index in supersymmetric 3D theories revisited, JHEP 01 (2010) 086 [arXiv:0910.0803] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    G.V. Dunne, Aspects of Chern-Simons theory, hep-th/9902115 [INSPIRE].
  6. [6]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J. Labastida and A. Ramallo, Operator formalism for Chern-Simons theories, Phys. Lett. B 227 (1989) 92 [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    B.A. Dubrovin, I.M. Krichever and S.P. Novikov, Schrödinger equation in a periodic field and Riemann surfaces, Dokl. Akad. Nauk SSSR 229 (1976) 15.MathSciNetGoogle Scholar
  11. [11]
    B.A. Dubrovin and S.P. Novikov, Ground states of a two-dimensional electron in a periodic magnetic field, Zh. Eksp. Teor. Fiz. 79 (1980) 1006.MathSciNetGoogle Scholar
  12. [12]
    A.V. Smilga, Noninteger flux: why it does not work, J. Math. Phys. 53 (2012) 042103 [arXiv:1104.3986] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S. Pancharatnam, Generalized theory of interference, and its applications, Proc. Indian Acad. Sci. A 44 (1956) 247.MathSciNetGoogle Scholar
  14. [14]
    M. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. Lond. A 392 (1984) 45.ADSGoogle Scholar
  15. [15]
    R.D. Pisarski and S. Rao, Topologically massive chromodynamics in the perturbative regime, Phys. Rev. D 32 (1985) 2081 [INSPIRE].ADSGoogle Scholar
  16. [16]
    H.-C. Kao, K.-M. Lee and T. Lee, The Chern-Simons coefficient in supersymmetric Yang-Mills Chern-Simons theories, Phys. Lett. B 373 (1996) 94 [hep-th/9506170] [INSPIRE].MathSciNetGoogle Scholar
  17. [17]
    A.V. Smilga, Vacuum structure in the chiral supersymmetric quantum electrodynamics, Sov. Phys. JETP 64 (1986) 8 [INSPIRE].Google Scholar
  18. [18]
    B.Yu. Blok and A.V. Smilga, Effective zero mode hamiltonian in supersymmetric chiral nonabelian gauge theories, Nucl. Phys. B 287 (1987) 589 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A.V. Smilga, Effective zero mode hamiltonian in supersymmetric chiral nonabelian gauge theories, Nucl. Phys. B 291 (1987) 241 [INSPIRE]MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A.V. Smilga, Born-Oppenheimer corrections to the effective zero mode Hamiltonian in SYM theory, JHEP 04 (2002) 054 [hep-th/0201048] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Claudson and M.B. Halpern, Supersymmetric ground state wave functions, Nucl. Phys. B 250 (1985) 689 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A.V. Smilga, Super-Yang-Mills quantum mechanics and supermembrane spectrum, in the proceedings of the International workshop on supermembranes and physics in 2 + 1 dimensions, M.J. Duff, C.N. Pope and E. Sezgin eds., World Scientific, Singapore (1990).Google Scholar
  23. [23]
    V. Kac and A.V. Smilga, Normalized vacuum states in N = 4 supersymmetric Yang-Mills quantum mechanics with any gauge group, Nucl. Phys. B 571 (2000) 515 [hep-th/9908096] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  26. [26]
    L.I. Nicolaescu, Notes on Seiberg-Witten theory, American Mathematical Society, Providence U.S.A. (2000).MATHGoogle Scholar
  27. [27]
    E. Ivanov and A. Smilga, Dirac operator on complex manifolds and supersymmetric quantum mechanics, arXiv:1012.2069 [INSPIRE].
  28. [28]
    D. Mumford, Tata lectures on theta, Birkhäuser, Boston U.S.A. (1983).MATHGoogle Scholar
  29. [29]
    A.M. Polyakov and P. Wiegmann, Theory of nonabelian goldstone bosons, Phys. Lett. B 131 (1983) 121 [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    K. Gawȩdzki and A. Kupiainen, Coset construction from functional integrals, Nucl. Phys. B 320 (1989) 625 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C.N. Yang, Condition of self duality for SU(2) gauge fields on euclidean four-dimensional space, Phys. Rev. Lett. 38 (1977) 1377 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A.V. Smilga, How to quantize supersymmetric theories, Nucl. Phys. B 292 (1987) 363 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    H.M. Asatryan and G.K. Savvidy, Configuration manifold of Yang-Mills classical mechanics, Phys. Lett. A 99 (1983) 290 [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    Y. Simonov, QCD hamiltonian in the polar representation, Yad. Fiz. 41 (1985) 1311 [INSPIRE].MathSciNetGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.SUBATECHUniversité de NantesNantesFrance

Personalised recommendations