The cusp anomalous dimension at three loops and beyond

  • Diego Correa
  • Johannes Henn
  • Juan Maldacena
  • Amit Sever


We derive an analytic formula at three loops for the cusp anomalous dimension Γcusp(ϕ) in \( \mathcal{N} = {4} \) super Yang-Mills. This is done by exploiting the relation of the latter to the Regge limit of massive amplitudes. We comment on the corresponding three loops quark anti-quark potential. Our result also determines a considerable part of the three- loop cusp anomalous dimension in QCD. Finally, we consider a limit in which only ladder diagrams contribute to physical observables. In that limit, a precise agreement with strong coupling is observed.


Wilson ’t Hooft and Polyakov loops Scattering Amplitudes AdS-CFT Cor- respondence 1/N Expansion 


  1. [1]
    A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    G. Korchemsky and A. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [INSPIRE].ADSGoogle Scholar
  3. [3]
    T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [Erratum ibid. D 80 (2009) 109901] [arXiv:0904.1021] [INSPIRE].
  4. [4]
    L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of N = 4 super Yang-Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-regularized three-loop four-gluon amplitude in N = 4 SYM: exponentiation and Regge limits, JHEP 04 (2010) 038 [arXiv:1001.1358] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    G. Korchemsky and A. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Y. Makeenko, P. Olesen and G.W. Semenoff, Cusped SYM Wilson loop at two loops and beyond, Nucl. Phys. B 748 (2006) 170 [hep-th/0602100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    G. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov Evolution Kernels of Parton Distributions, Mod. Phys. Lett. A 4 (1989) 1257 [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, arXiv:1202.4455 [INSPIRE].
  16. [16]
    B. Fiol, B. Garolera and A. Lewkowycz, Exact results for static and radiative fields of a quark in N = 4 super Yang-Mills, arXiv:1202.5292 [INSPIRE].
  17. [17]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  19. [19]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S. Frolov and A.A. Tseytlin, Rotating string solutions: AdS/CFT duality in nonsupersymmetric sectors, Phys. Lett. B 570 (2003) 96 [hep-th/0306143] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    M. Kruczenski, Spin chains and string theory, Phys. Rev. Lett. 93 (2004) 161602 [hep-th/0311203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    B. Stefański Jr. and A.A. Tseytlin, Large spin limits of AdS/CFT and generalized Landau-Lifshitz equations, JHEP 05 (2004) 042 [hep-th/0404133] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N. Berkovits and J. Maldacena, Fermionic T-duality, Dual Superconformal Symmetry and the Amplitude/Wilson Loop Connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    G. Korchemsky and A. Radyushkin, Loop Space Formalism And Renormalization Group For The Infrared Asymptotics Of Qcd, Phys. Lett. B 171 (1986) 459 [INSPIRE].ADSGoogle Scholar
  25. [25]
    Z. Bern, J. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 super Yang-Mills, Phys. Lett. B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].ADSGoogle Scholar
  26. [26]
    Z. Bern, J.J. Carrasco, T. Dennen, Y.-t. Huang and H. Ita, Generalized Unitarity and Six-Dimensional Helicity, Phys. Rev. D 83 (2011) 085022 [arXiv:1010.0494] [INSPIRE].ADSGoogle Scholar
  27. [27]
    R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The Analytic S-Matrix, Cambridge University Press (1966).Google Scholar
  28. [28]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    M. Czakon, J. Gluza and T. Riemann, Master integrals for massive two-loop bhabha scattering in QED, Phys. Rev. D 71 (2005) 073009 [hep-ph/0412164] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Gluza, A. Mitov, S. Moch and T. Riemann, The QCD form factor of heavy quarks at NNLO, JHEP 07 (2009) 001 [arXiv:0905.1137] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    F.C.S. Brown, Multiple zeta values and periods of moduli spaces Open image in new window 0 ,n, math/0606419.
  35. [35]
    A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238.
  36. [36]
    J. Erickson, G. Semenoff, R. Szabo and K. Zarembo, Static potential in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 61 (2000) 105006 [hep-th/9911088] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    G. Poschl and E. Teller, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators, Z. Phys. 83 (1933) 143 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    I.R. Klebanov, J.M. Maldacena and C.B. Thorn, Dynamics of flux tubes in large-N gauge theories, JHEP 04 (2006) 024 [hep-th/0602255] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    A. Pineda, The Static potential in N = 4 supersymmetric Yang-Mills at weak coupling, Phys. Rev. D 77 (2008) 021701 [arXiv:0709.2876] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    T. Appelquist, M. Dine and I. Muzinich, The Static Limit of Quantum Chromodynamics, Phys. Rev. D 17 (1978) 2074 [INSPIRE].ADSGoogle Scholar
  41. [41]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    N. Usyukina and A.I. Davydychev, Exact results for three and four point ladder diagrams with an arbitrary number of rungs, Phys. Lett. B 305 (1993) 136 [INSPIRE].ADSGoogle Scholar
  43. [43]
    J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in Higgs-regulated N = 4 SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, arXiv:1203.1913 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Diego Correa
    • 1
  • Johannes Henn
    • 2
  • Juan Maldacena
    • 2
  • Amit Sever
    • 2
    • 3
  1. 1.Instituto de Física La PlataUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations