Fingerprinting Higgs suspects at the LHC

  • J. R. Espinosa
  • C. Grojean
  • M. Mühlleitner
  • M. Trott
Open Access


We outline a method for characterizing deviations from the properties of a Standard Model (SM) Higgs boson. We apply it to current data in order to characterize up to which degree the SM Higgs boson interpretation is consistent with experiment. We find that the SM Higgs boson is consistent with the current data set at the 82 % confidence level, based on data of excess events reported by CMS and ATLAS, which are interpreted to be related to the mass scale m h ∼ 124 − 126 GeV, and on published CLs exclusion regions. We perform a global fit in terms of two parameters characterizing the deviation from the SM value in the gauge and fermion couplings of a Higgs boson. We find two minima in the global fit and identify observables that can remove this degeneracy. An update for Moriond 2012 data is included in the appendix, which finds that the SM Higgs boson is now consistent with the current data set at only the 89 % confidence level (which corresponds to ∼ 2 σ tension compared to the best fit point).


Higgs Physics Beyond Standard Model 


  1. [1]
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [INSPIRE].ADSGoogle Scholar
  3. [3]
    P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin breaking in technicolor models, Nucl. Phys. B 173 (1980) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R.S. Chivukula and H. Georgi, Composite technicolor standard model, Phys. Lett. B 188 (1987) 99 [INSPIRE].ADSGoogle Scholar
  5. [5]
    L. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.J. Buras, Minimal flavor violation, Acta Phys. Polon. B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].ADSGoogle Scholar
  8. [8]
    V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  10. [10]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7 \), arXiv:1202.1488 [INSPIRE].
  11. [11]
    CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt {s} = 7 \) TeV, arXiv:1202.1487 [INSPIRE].
  12. [12]
    G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Grober and M. Muhlleitner, Composite Higgs boson pair production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.V. Manohar and M.B. Wise, Modifications to the properties of the Higgs boson, Phys. Lett. B 636 (2006) 107 [hep-ph/0601212] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Burgess, J. Matias and M. Pospelov, A Higgs or not a Higgs? What to do if you discover a new scalar particle, Int. J. Mod. Phys. A 17 (2002) 1841 [hep-ph/9912459] [INSPIRE].ADSGoogle Scholar
  17. [17]
    V. Barger, H.E. Logan and G. Shaughnessy, Identifying extended Higgs models at the LHC, Phys. Rev. D 79 (2009) 115018 [arXiv:0902.0170] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Bock et al., Measuring hidden Higgs and strongly-interacting Higgs scenarios, Phys. Lett. B 694 (2010) 44 [arXiv:1007.2645] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].ADSGoogle Scholar
  21. [21]
    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Bonnet, M. Gavela, T. Ota and W. Winter, Anomalous Higgs couplings at the LHC and their theoretical interpretation, Phys. Rev. D 85 (2012) 035016 [arXiv:1105.5140] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: standard Higgs and hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Dührssen et al., Extracting Higgs boson couplings from CERN LHC data, Phys. Rev. D 70 (2004) 113009 [hep-ph/0406323] [INSPIRE].ADSGoogle Scholar
  25. [25]
    B.A. Campbell, J. Ellis and K.A. Olive, Phenomenology and cosmology of an electroweak pseudo-dilaton and electroweak baryons, JHEP 03 (2012) 026 [arXiv:1111.4495] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt {s} = 7 \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    ATLAS collaboration, Combination of Higgs Boson Searches with up to 4.9 fb −1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163 (2011).
  28. [28]
    CMS collaboration, Search for the standard model Higgs boson in the decay channel HZZ → 4l in pp collisions at \( \sqrt {s} = 7 \) TeV, PH-EP-2012-025 (2012).
  29. [29]
    CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt {s} = 7 \), arXiv:1202.1489 [INSPIRE].
  30. [30]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  31. [31]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].ADSGoogle Scholar
  34. [34]
    B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett. B 247 (1990) 88 [INSPIRE].ADSGoogle Scholar
  35. [35]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Golden and L. Randall, Radiative corrections to electroweak parameters in technicolor theories, Nucl. Phys. B 361 (1991) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  38. [38]
    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].ADSGoogle Scholar
  39. [39]
    G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys. B 369 (1992) 3 [Erratum ibid. B 376 (1992) 444] [INSPIRE].
  40. [40]
    M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, arXiv:1107.0975 [INSPIRE].
  41. [41]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, arXiv:1202.3144 [INSPIRE].
  42. [42]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Rencontres de Moriond 2012,

Copyright information

© SISSA 2012

Authors and Affiliations

  • J. R. Espinosa
    • 1
  • C. Grojean
    • 2
  • M. Mühlleitner
    • 3
  • M. Trott
    • 2
  1. 1.ICREA at IFAE, Universitat Autonoma de BarcelonaBarcelonaSpain
  2. 2.Theory Division, Physics DepartmentCERNGeneva 23Switzerland
  3. 3.Institute for Theoretical Physics, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations