Moduli of monopole walls and amoebas



We study doubly-periodic monopoles, also called monopole walls, determining their spectral data and computing the dimensions of their moduli spaces. Using spectral data we identify the moduli, and compare our results with a perturbative analysis. We also identify an SL(2, \(\mathbb{Z}\)) action on monopole walls, in which the S transformation corresponds to the Nahm transform.


Solitons Monopoles and Instantons D-branes 


  1. [1]
    N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].
  2. [2]
    G. Chalmers and A. Hanany, Three-dimensional gauge theories and monopoles, Nucl. Phys. B 489 (1997) 223 [hep-th/9608105] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    S.A. Cherkis and A. Kapustin, Periodic monopoles with singularities and N = 2 super QCD, Commun. Math. Phys. 234 (2003) 1 [hep-th/0011081] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    S. Bolognesi, Multi-monopoles, magnetic bags, bions and the monopole cosmological problem, Nucl. Phys. B 752 (2006) 93 [hep-th/0512133] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    K.-M. Lee and E.J. Weinberg, BPS magnetic monopole bags, Phys. Rev. D 79 (2009) 025013 [arXiv:0810.4962] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    D. Harland, The large-N limit of the Nahm transform, Commun. Math. Phys. 311 (2012) 689 [arXiv:1102.3048] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    S. Bolognesi and D. Tong, Monopoles and holography, JHEP 01 (2011) 153 [arXiv:1010.4178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    P. Sutcliffe, Monopoles in AdS, JHEP 08 (2011) 032 [arXiv:1104.1888] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    N. Manton, Monopole planets and galaxies, Phys. Rev. D 85 (2012) 045022 [arXiv:1111.2934] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Evslin and S.B. Gudnason, High Q BPS monopole bags are urchins, arXiv:1111.3891 [INSPIRE].
  12. [12]
    C.M. Linton, Rapidly convergent representations for Green’s functions for Laplace’s equation, Proc. R. Soc. Lond. A 455 (1999) 1767.MathSciNetADSGoogle Scholar
  13. [13]
    D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys. B 503 (1997) 220 [hep-th/9608163] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S.A. Cherkis, C. O’Hara and C. Samann, Super Yang-Mills theory with impurity walls and instanton moduli spaces, Phys. Rev. D 83 (2011) 126009 [arXiv:1103.0042] [INSPIRE].ADSGoogle Scholar
  15. [15]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    S.A. Cherkis, Instantons on gravitons, Commun. Math. Phys. 306 (2011) 449 [arXiv:1007.0044] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    B. Haghighat and S. Vandoren, Five-dimensional gauge theory and compactification on a torus, JHEP 09 (2011) 060 [arXiv:1107.2847] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S.A. Cherkis and A. Kapustin, Nahm transform for periodic monopoles and N = 2 super Yang-Mills theory, Commun. Math. Phys. 218 (2001) 333 [hep-th/0006050] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  19. [19]
    S. Donaldson, Nahm’s equations and the classification of monopoles, Commun. Math. Phys. 96 (1984) 387 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  20. [20]
    S. Jarvis, Construction of Euclidian monopoles, Proc. London Math. Soc. 77 (1998) 193.MathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Jarvis, Euclidian monopoles and rational maps, Proc. London Math. Soc. 77 (1998) 170.MathSciNetCrossRefGoogle Scholar
  22. [22]
    R. Ward, Periodic monopoles, Phys. Lett. B 619 (2005) 177 [hep-th/0505254] [INSPIRE].ADSGoogle Scholar
  23. [23]
    I. Newton, Letters to Oldenburg, 13 June 1676 and 24 October 1676.Google Scholar
  24. [24]
    I.M. Gelfand, M.M. Kapranov and A.V. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhauser, Boston U.S.A. (1994).MATHCrossRefGoogle Scholar
  25. [25]
    G. Mikhalkin and H. Rullgård, Amoebas of maximal area, Int. Math. Res. Not. 9 (2001) 441CrossRefGoogle Scholar
  26. [26]
    A.G. Khovanskii, Newton polyhedra and toroidal varieties, Func. Anal. Appl. 11 (1977) 289.CrossRefGoogle Scholar
  27. [27]
    W. Nahm, The construction of all self-dual multimonopoles by the ADHM method, in Monopoles in quantum field theory, N.S. Craigie, P. Goddard and W. Nahm eds., World Scientific, Singapore (1982).Google Scholar
  28. [28]
    W. Nahm, Self-dual monooles and calorons, in Group theoretical methods in physics, Springer Lecture Notes in Physics 201, Springer, Berlin Germany (1984).Google Scholar
  29. [29]
    R. Ward, A monopole wall, Phys. Rev. D 75 (2007) 021701 [hep-th/0612047] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K.-M. Lee, Sheets of BPS monopoles and instantons with arbitrary simple gauge group, Phys. Lett. B 445 (1999) 387 [hep-th/9810110] [INSPIRE].ADSGoogle Scholar
  31. [31]
    F.J.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST handbook of mathematical functions, NIST and Cambridge University Press, Cambridge U.K. (2010).Google Scholar
  32. [32]
    M.F. Atiyah, N.J. Hitchin and I.M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. London A 362 (1978) 425.MathSciNetADSGoogle Scholar
  33. [33]
    J.M. Arms, J.E. Marsden and V. Moncrief, Symmetry and bifurcations of momentum mappings, Comm. Math. Phys. 78 (1980/81) 455.Google Scholar
  34. [34]
    J. Huebschmann, The singularities of Yang-Mills connections for bundles on a surface. I. The local model, Math. Z. 220 (1995) 595 [dg-ga/9411006].MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    N. Manton, A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982) 54 [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ArizonaTucsonU.S.A.
  2. 2.Department of Mathematical SciencesUniversity of DurhamDurhamU.K.

Personalised recommendations