# An ideal toy model for confining, walking and conformal gauge theories: the *O*(3) sigma model with *ϑ*-term

- 66 Downloads
- 16 Citations

## Abstract

A toy model is proposed for four dimensional non-abelian gauge theories coupled to a large number of fermionic degrees of freedom. As the number of flavors is varied the gauge theory may be confining, walking or conformal. The toy model mimicking this feature is the two dimensional *O*(3) sigma model with a *ϑ*-term. For all *ϑ* the model is asymptotically free. For small *ϑ* the model is confining in the infra red, for *ϑ* = *π* the model has a non-trivial infra red fixed point and consequently for *ϑ* slightly below *π* the coupling walks. The first step in investigating the notoriously difficult systematic effects of the gauge theory in the toy model is to establish non-perturbatively that the *ϑ* parameter is actually a relevant coupling. This is done by showing that there exist quantities that are entirely given by the total topological charge and are well defined in the continuum limit and are non-zero, despite the fact that the topological susceptibility is divergent. More precisely it is established that the differences of connected correlation functions of the topological charge (the cumulants) are finite and non-zero and consequently there is only a single divergent parameter in *Z* (*ϑ*) but otherwise it is finite. This divergent constant can be removed by an appropriate counter term rendering the theory completely finite even at *ϑ* > 0.

## Keywords

Lattice Gauge Field Theories Sigma Models## References

- [1]L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago,
*Finite volume effects in*SU(2)*with two adjoint fermions*, arXiv:1111.4672 [INSPIRE]. - [2]S. Catterall, L. Del Debbio, J. Giedt and L. Keegan,
*Systematic errors of the MCRG method*, PoS(LATTICE 2011)068 [arXiv:1110.1660] [INSPIRE]. - [3]F. Bursa et al.,
*Improved lattice spectroscopy of minimal walking technicolor*,*Phys. Rev.***D 84**(2011) 034506 [arXiv:1104.4301] [INSPIRE].ADSGoogle Scholar - [4]S. Sint and P. Vilaseca,
*Perturbative lattice artefacts in the SF coupling for technicolor-inspired models*, arXiv:1111.2227 [INSPIRE]. - [5]Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder,
*Nearly conformal gauge theories in finite volume*,*Phys. Lett.***B 681**(2009) 353 [arXiv:0907.4562] [INSPIRE].MathSciNetADSGoogle Scholar - [6]T. Appelquist, G.T. Fleming and E.T. Neil,
*Lattice study of conformal behavior in*SU(3)*Yang-Mills theories*,*Phys. Rev.***D 79**(2009) 076010 [arXiv:0901.3766] [INSPIRE].ADSGoogle Scholar - [7]X.-Y. Jin and R.D. Mawhinney,
*Lattice QCD with*8*and*12*degenerate quark flavors*, PoS(LAT2009)049 [arXiv:0910.3216] [INSPIRE]. - [8]A. Deuzeman, M. Lombardo and E. Pallante,
*Evidence for a conformal phase in*SU(N)*gauge theories*,*Phys. Rev.***D 82**(2010) 074503 [arXiv:0904.4662] [INSPIRE].ADSGoogle Scholar - [9]Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, et al.,
*Twelve massless flavors and three colors below the conformal window*,*Phys. Lett.***B 703**(2011) 348 [arXiv:1104.3124] [INSPIRE].ADSGoogle Scholar - [10]A. Hasenfratz,
*Infrared fixed point of the*12-*fermion*SU(3)*gauge model based on*2*-lattice MCRG matching*,*Phys. Rev. Lett.***108**(2012) 061601 [arXiv:1106.5293] [INSPIRE].ADSCrossRefGoogle Scholar - [11]V. Novikov, M.A. Shifman, A. Vainshtein and V.I. Zakharov,
*Two-dimensional σ-models: modeling nonperturbative effects of quantum chromodynamics*,*Phys. Rept.***116**(1984) 103 [*Sov. J. Part. Nucl.***17**(1986) 204] [*Fiz. Elem. Chast. Atom. Yadra***17**(1986) 472] [INSPIRE]. - [12]A.B. Zamolodchikov and A.B. Zamolodchikov,
*Factorized s matrices in two-dimensions as the exact solutions of certain relativistic quantum field models*,*Annals Phys.***120**(1979) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [13]J. Balog and A. Hegedus,
*TBA equations for excited states in the O*(3)*and O*(4)*nonlinear σ-model*,*J. Phys.***A 37**(2004) 1881 [hep-th/0309009] [INSPIRE].MathSciNetADSGoogle Scholar - [14]J. Balog and A. Hegedus,
*TBA equations for the mass gap in the O*(2*r*)*non-linear σ-models*,*Nucl. Phys.***B 725**(2005) 531 [hep-th/0504186] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [15]J. Balog and A. Hegedus,
*The finite size spectrum of the*2*-dimensional O*(3)*nonlinear σ-model*,*Nucl. Phys.***B 829**(2010) 425 [arXiv:0907.1759] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [16]F. Haldane,
*Continuum dynamics of the*1*D Heisenberg antiferromagnetic identification with the O*(3)*nonlinear σ-model*,*Phys. Lett.***A 93**(1983) 464 [INSPIRE].MathSciNetADSGoogle Scholar - [17]F. Haldane,
*Nonlinear field theory of large spin Heisenberg antiferromagnets. Semiclassically quantized solitons of the one-dimensional easy Axis Neel state*,*Phys. Rev. Lett.***50**(1983) 1153 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [18]W. Bietenholz, A. Pochinsky and U. Wiese,
*Meron cluster simulation of the ϑ vacuum in the*2*D O*(3)*model*,*Phys. Rev. Lett.***75**(1995) 4524 [hep-lat/9505019] [INSPIRE].ADSCrossRefGoogle Scholar - [19]M. Bogli, F. Niedermayer, M. Pepe and U.-J. Wiese,
*Non-trivial ϑ-vacuum effects in the*2*D O*(3)*model*,*JHEP***04**(2012) 117 [arXiv:1112.1873] [INSPIRE].ADSCrossRefGoogle Scholar - [20]M. Lüscher,
*Does the topological susceptibility in lattice σ-models scale according to the perturbative renormalization group?*,*Nucl. Phys.***B 200**(1982) 61 [INSPIRE].ADSCrossRefGoogle Scholar - [21]G. Bhanot, R.F. Dashen, N. Seiberg and H. Levine,
*Scaling and ϑ dependence in the O*(3)*σ-model*,*Phys. Rev. Lett.***53**(1984) 519 [INSPIRE].ADSCrossRefGoogle Scholar - [22]S. Caracciolo, R.G. Edwards, A. Pelissetto and A.D. Sokal,
*Wolff type embedding algorithms for general nonlinear σ-models*,*Nucl. Phys.***B 403**(1993) 475 [hep-lat/9205005] [INSPIRE].ADSCrossRefGoogle Scholar - [23]A. Patrascioiu and E. Seiler,
*Percolation theory and the existence of a soft phase in*2*D spin models*,*Nucl. Phys. Proc. Suppl.***30**(1993) 184 [INSPIRE].ADSCrossRefGoogle Scholar - [24]M. Hasenbusch,
*O*(*N*) and*RP*^{(N −1)}*models in two-dimensions*,*Phys. Rev.***D 53**(1996) 3445 [hep-lat/9507008] [INSPIRE].MathSciNetADSGoogle Scholar - [25]W. Bietenholz, U. Gerber, M. Pepe and U.-J. Wiese,
*Topological lattice actions*,*JHEP***12**(2010) 020 [arXiv:1009.2146] [INSPIRE].ADSCrossRefGoogle Scholar - [26]F. Niedermayer,
*A general cluster updating method for Monte Carlo simulations*,*Phys. Rev. Lett.***61**(1988) 2026 [INSPIRE].ADSCrossRefGoogle Scholar - [27]U. Wolff,
*Collective Monte Carlo updating for spin systems*,*Phys. Rev. Lett.***62**(1989) 361 [INSPIRE].ADSCrossRefGoogle Scholar - [28]B. Berg and M. Lüscher,
*Definition and statistical distributions of a topological number in the lattice O*(3)*σ-model*,*Nucl. Phys.***B 190**(1981) 412 [INSPIRE].ADSCrossRefGoogle Scholar - [29]J. Balog, F. Niedermayer and P. Weisz,
*The puzzle of apparent linear lattice artifacts in the*2*D non-linear σ-model and Symanzik’s solution*,*Nucl. Phys.***B 824**(2010) 563 [arXiv:0905.1730] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar - [30]J. Balog, F. Niedermayer and P. Weisz,
*Logarithmic corrections to O*(*a*^{2})*lattice artifacts*,*Phys. Lett.***B 676**(2009) 188 [arXiv:0901.4033] [INSPIRE].ADSGoogle Scholar - [31]H. Gies and J. Jaeckel,
*Chiral phase structure of QCD with many flavors*,*Eur. Phys. J.***C 46**(2006) 433 [hep-ph/0507171] [INSPIRE].ADSCrossRefGoogle Scholar - [32]D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov,
*Conformality lost*,*Phys. Rev.***D 80**(2009) 125005 [arXiv:0905.4752] [INSPIRE].ADSGoogle Scholar - [33]J. Braun, C.S. Fischer and H. Gies,
*Beyond Miransky scaling*,*Phys. Rev.***D 84**(2011) 034045 [arXiv:1012.4279] [INSPIRE].ADSGoogle Scholar