An ideal toy model for confining, walking and conformal gauge theories: the O(3) sigma model with ϑ-term

  • Dániel Nógrádi


A toy model is proposed for four dimensional non-abelian gauge theories coupled to a large number of fermionic degrees of freedom. As the number of flavors is varied the gauge theory may be confining, walking or conformal. The toy model mimicking this feature is the two dimensional O(3) sigma model with a ϑ-term. For all ϑ the model is asymptotically free. For small ϑ the model is confining in the infra red, for ϑ = π the model has a non-trivial infra red fixed point and consequently for ϑ slightly below π the coupling walks. The first step in investigating the notoriously difficult systematic effects of the gauge theory in the toy model is to establish non-perturbatively that the ϑ parameter is actually a relevant coupling. This is done by showing that there exist quantities that are entirely given by the total topological charge and are well defined in the continuum limit and are non-zero, despite the fact that the topological susceptibility is divergent. More precisely it is established that the differences of connected correlation functions of the topological charge (the cumulants) are finite and non-zero and consequently there is only a single divergent parameter in Z (ϑ) but otherwise it is finite. This divergent constant can be removed by an appropriate counter term rendering the theory completely finite even at ϑ > 0.


Lattice Gauge Field Theories Sigma Models 


  1. [1]
    L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Finite volume effects in SU(2) with two adjoint fermions, arXiv:1111.4672 [INSPIRE].
  2. [2]
    S. Catterall, L. Del Debbio, J. Giedt and L. Keegan, Systematic errors of the MCRG method, PoS(LATTICE 2011)068 [arXiv:1110.1660] [INSPIRE].
  3. [3]
    F. Bursa et al., Improved lattice spectroscopy of minimal walking technicolor, Phys. Rev. D 84 (2011) 034506 [arXiv:1104.4301] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S. Sint and P. Vilaseca, Perturbative lattice artefacts in the SF coupling for technicolor-inspired models, arXiv:1111.2227 [INSPIRE].
  5. [5]
    Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, Nearly conformal gauge theories in finite volume, Phys. Lett. B 681 (2009) 353 [arXiv:0907.4562] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    T. Appelquist, G.T. Fleming and E.T. Neil, Lattice study of conformal behavior in SU(3) Yang-Mills theories, Phys. Rev. D 79 (2009) 076010 [arXiv:0901.3766] [INSPIRE].ADSGoogle Scholar
  7. [7]
    X.-Y. Jin and R.D. Mawhinney, Lattice QCD with 8 and 12 degenerate quark flavors, PoS(LAT2009)049 [arXiv:0910.3216] [INSPIRE].
  8. [8]
    A. Deuzeman, M. Lombardo and E. Pallante, Evidence for a conformal phase in SU(N) gauge theories, Phys. Rev. D 82 (2010) 074503 [arXiv:0904.4662] [INSPIRE].ADSGoogle Scholar
  9. [9]
    Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, et al., Twelve massless flavors and three colors below the conformal window, Phys. Lett. B 703 (2011) 348 [arXiv:1104.3124] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Hasenfratz, Infrared fixed point of the 12-fermion SU(3) gauge model based on 2-lattice MCRG matching, Phys. Rev. Lett. 108 (2012) 061601 [arXiv:1106.5293] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V. Novikov, M.A. Shifman, A. Vainshtein and V.I. Zakharov, Two-dimensional σ-models: modeling nonperturbative effects of quantum chromodynamics, Phys. Rept. 116 (1984) 103 [Sov. J. Part. Nucl. 17 (1986) 204] [Fiz. Elem. Chast. Atom. Yadra 17 (1986) 472] [INSPIRE].
  12. [12]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized s matrices in two-dimensions as the exact solutions of certain relativistic quantum field models, Annals Phys. 120 (1979) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J. Balog and A. Hegedus, TBA equations for excited states in the O(3) and O(4) nonlinear σ-model, J. Phys. A 37 (2004) 1881 [hep-th/0309009] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    J. Balog and A. Hegedus, TBA equations for the mass gap in the O(2r) non-linear σ-models, Nucl. Phys. B 725 (2005) 531 [hep-th/0504186] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J. Balog and A. Hegedus, The finite size spectrum of the 2-dimensional O(3) nonlinear σ-model, Nucl. Phys. B 829 (2010) 425 [arXiv:0907.1759] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    F. Haldane, Continuum dynamics of the 1D Heisenberg antiferromagnetic identification with the O(3) nonlinear σ-model, Phys. Lett. A 93 (1983) 464 [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    F. Haldane, Nonlinear field theory of large spin Heisenberg antiferromagnets. Semiclassically quantized solitons of the one-dimensional easy Axis Neel state, Phys. Rev. Lett. 50 (1983) 1153 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    W. Bietenholz, A. Pochinsky and U. Wiese, Meron cluster simulation of the ϑ vacuum in the 2D O(3) model, Phys. Rev. Lett. 75 (1995) 4524 [hep-lat/9505019] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Bogli, F. Niedermayer, M. Pepe and U.-J. Wiese, Non-trivial ϑ-vacuum effects in the 2D O(3) model, JHEP 04 (2012) 117 [arXiv:1112.1873] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Lüscher, Does the topological susceptibility in lattice σ-models scale according to the perturbative renormalization group?, Nucl. Phys. B 200 (1982) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Bhanot, R.F. Dashen, N. Seiberg and H. Levine, Scaling and ϑ dependence in the O(3) σ-model, Phys. Rev. Lett. 53 (1984) 519 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Caracciolo, R.G. Edwards, A. Pelissetto and A.D. Sokal, Wolff type embedding algorithms for general nonlinear σ-models, Nucl. Phys. B 403 (1993) 475 [hep-lat/9205005] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Patrascioiu and E. Seiler, Percolation theory and the existence of a soft phase in 2D spin models, Nucl. Phys. Proc. Suppl. 30 (1993) 184 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Hasenbusch, O(N) and RP (N −1) models in two-dimensions, Phys. Rev. D 53 (1996) 3445 [hep-lat/9507008] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    W. Bietenholz, U. Gerber, M. Pepe and U.-J. Wiese, Topological lattice actions, JHEP 12 (2010) 020 [arXiv:1009.2146] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F. Niedermayer, A general cluster updating method for Monte Carlo simulations, Phys. Rev. Lett. 61 (1988) 2026 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62 (1989) 361 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    B. Berg and M. Lüscher, Definition and statistical distributions of a topological number in the lattice O(3) σ-model, Nucl. Phys. B 190 (1981) 412 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Balog, F. Niedermayer and P. Weisz, The puzzle of apparent linear lattice artifacts in the 2D non-linear σ-model and Symanzik’s solution, Nucl. Phys. B 824 (2010) 563 [arXiv:0905.1730] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J. Balog, F. Niedermayer and P. Weisz, Logarithmic corrections to O(a 2) lattice artifacts, Phys. Lett. B 676 (2009) 188 [arXiv:0901.4033] [INSPIRE].ADSGoogle Scholar
  31. [31]
    H. Gies and J. Jaeckel, Chiral phase structure of QCD with many flavors, Eur. Phys. J. C 46 (2006) 433 [hep-ph/0507171] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Braun, C.S. Fischer and H. Gies, Beyond Miransky scaling, Phys. Rev. D 84 (2011) 034045 [arXiv:1012.4279] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Eötvös University, Department for Theoretical PhysicsBudapestHungary

Personalised recommendations