Advertisement

Effective theories of single field inflation when heavy fields matter

  • Ana Achúcarro
  • Jinn-Ouk Gong
  • Sjoerd Hardeman
  • Gonzalo A. Palma
  • Subodh P. Patil
Open Access
Article

Keywords

Ective Action Ective Theory Goldstone Boson Wilkinson Microwave Anisotropy Probe Parent Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    S. Weinberg, Effective field theory for inflation, Phys. Rev. D 77 (2008) 123541 [arXiv:0804.4291] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    C.P. Burgess, J.M. Cline and R. Holman, Effective field theories and inflation, JCAP 10 (2003) 004 [hep-th/0306079] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Planck Science Team, Planck: the scientific programme, ESA-SCI(2005)1, version 2, http://www.sciops.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI(2005)1 V2.pdf.
  6. [6]
    R. Laureijs et al., Euclid definition study report, arXiv:1110.3193 [INSPIRE].
  7. [7]
    S. Ho et al., Clustering of Sloan Digital Sky Survey III photometric luminous galaxies: the measurement, systematics and cosmological implications, arXiv:1201.2137 [INSPIRE].
  8. [8]
    H.-J. Seo et al., Acoustic scale from the angular power spectra of SDSS-III DR8 photometric luminous galaxies, arXiv:1201.2172 [INSPIRE].
  9. [9]
    S.G. Rubin, Effect of massive fields on inflation, JETP Lett. 74 (2001) 247 [Pisma Zh. Eksp. Teor. Fiz. 74 (2001) 275] [hep-ph/0110132] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Features of heavy physics in the CMB power spectrum, JCAP 01 (2011) 030 [arXiv:1010.3693] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Mass hierarchies and non-decoupling in multi-scalar field dynamics, Phys. Rev. D 84 (2011) 043502 [arXiv:1005.3848] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Gomez-Reino and C.A. Scrucca, Constraints for the existence of flat and stable non-supersymmetric vacua in supergravity, JHEP 09 (2006) 008 [hep-th/0606273] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    L. Covi et al., De Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    L. Covi et al., Constraints on modular inflation in supergravity and string theory, JHEP 08 (2008) 055 [arXiv:0805.3290] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S. Hardeman, J.M. Oberreuter, G.A. Palma, K. Schalm and T. van der Aalst, The everpresent eta-problem: knowledge of all hidden sectors required, JHEP 04 (2011) 009 [arXiv:1012.5966] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.E. Lidsey et al., Reconstructing the inflation potential: an overview, Rev. Mod. Phys. 69 (1997) 373 [astro-ph/9508078] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C.P. Burgess and L. McAllister, Challenges for string cosmology, Class. Quant. Grav. 28 (2011) 204002 [arXiv:1108.2660] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    J. Martin and R.H. Brandenberger, The transPlanckian problem of inflationary cosmology, Phys. Rev. D 63 (2001) 123501 [hep-th/0005209] [INSPIRE].ADSGoogle Scholar
  20. [20]
    G. Shiu and J. Xu, Effective field theory and decoupling in multi-field inflation: an illustrative case study, Phys. Rev. D 84 (2011) 103509 [arXiv:1108.0981] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Cespedes, V. Atal and G.A. Palma, On the importance of heavy fields during inflation, JCAP 05 (2012) 008 [arXiv:1201.4848] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A.J. Tolley and M. Wyman, The Gelaton scenario: equilateral non-Gaussianity from multi-field dynamics, Phys. Rev. D 81 (2010) 043502 [arXiv:0910.1853] [INSPIRE].ADSGoogle Scholar
  23. [23]
    X. Chen and Y. Wang, Quasi-single field inflation and non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Battefeld, T. Battefeld and S. Schulz, On the unlikeliness of multi-field inflation: bounded random potentials and our vacuum, arXiv:1203.3941 [INSPIRE].
  25. [25]
    D. Baumann and D. Green, Equilateral non-Gaussianity and new physics on the horizon, JCAP 09 (2011) 014 [arXiv:1102.5343] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Achucarro, J.-O. Gong, G.A. Palma and S.P. Patil, Features of heavy physics in the primordial bispectrum, in preparation.Google Scholar
  28. [28]
    C.P. Burgess, J.M. Cline, F. Lemieux and R. Holman, Are inflationary predictions sensitive to very high-energy physics?, JHEP 02 (2003) 048 [hep-th/0210233] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M.G. Jackson and K. Schalm, Model independent signatures of new physics in the inflationary power spectrum, Phys. Rev. Lett. 108 (2012) 111301 [arXiv:1007.0185] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M.G. Jackson and K. Schalm, Model-independent signatures of new physics in slow-roll inflation, arXiv:1104.0887 [INSPIRE].
  31. [31]
    S. Cremonini, Z. Lalak and K. Turzynski, On non-canonical kinetic terms and the tilt of the power spectrum, Phys. Rev. D 82 (2010) 047301 [arXiv:1005.4347] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Cremonini, Z. Lalak and K. Turzynski, Strongly coupled perturbations in two-field inflationary models, JCAP 03 (2011) 016 [arXiv:1010.3021] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    L. Senatore and M. Zaldarriaga, The effective field theory of multifield inflation, JHEP 04 (2012) 024 [arXiv:1009.2093] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N. Khosravi, Effective field theory of multi-field inflation a la Weinberg, arXiv:1203.2266 [INSPIRE].
  35. [35]
    P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the universe: stable violation of the null energy condition and non-standard cosmologies, JHEP 12 (2006) 080 [hep-th/0606090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    J. Silk and M.S. Turner, Double inflation, Phys. Rev. D 35 (1987) 419 [INSPIRE].ADSGoogle Scholar
  37. [37]
    F. Vernizzi and D. Wands, Non-Gaussianities in two-field inflation, JCAP 05 (2006) 019 [astro-ph/0603799] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C.M. Peterson and M. Tegmark, Testing two-field inflation, Phys. Rev. D 83 (2011) 023522 [arXiv:1005.4056] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C.M. Peterson and M. Tegmark, Testing multi-field inflation: a geometric approach, arXiv:1111.0927 [INSPIRE].
  40. [40]
    J. Goldstone, Field theories with superconductor solutions, Nuovo Cim. 19 (1961) 154 [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    E. Silverstein and D. Tong, Scalar speed limits and cosmology: acceleration from D-cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    J. Garriga and V.F. Mukhanov, Perturbations in k-inflation, Phys. Lett. B 458 (1999) 219 [hep-th/9904176] [INSPIRE].MathSciNetADSGoogle Scholar
  45. [45]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, gr-qc/0405109 [INSPIRE].
  46. [46]
    S. Groot Nibbelink and B.J.W. van Tent, Density perturbations arising from multiple field slow roll inflation, hep-ph/0011325 [INSPIRE].
  47. [47]
    S. Groot Nibbelink and B.J.W. van Tent, Scalar perturbations during multiple field slow-roll inflation, Class. Quant. Grav. 19 (2002) 613 [hep-ph/0107272] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  48. [48]
    J.-O. Gong and E.D. Stewart, The power spectrum for a multicomponent inflaton to second order corrections in the slow roll expansion, Phys. Lett. B 538 (2002) 213 [astro-ph/0202098] [INSPIRE].ADSGoogle Scholar
  49. [49]
    H. Noh and J.-C. Hwang, Second-order perturbations of the Friedmann world model, Phys. Rev. D 69 (2004) 104011 [astro-ph/0305123] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A.A. Starobinsky, Multicomponent de Sitter (inflationary) stages and the generation of perturbations, JETP Lett. 42 (1985) 152 [Pisma Zh. Eksp. Teor. Fiz. 42 (1985) 124] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Sasaki and E.D. Stewart, A general analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys. 95 (1996) 71 [astro-ph/9507001] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Sasaki and T. Tanaka, Superhorizon scale dynamics of multiscalar inflation, Prog. Theor. Phys. 99 (1998) 763 [gr-qc/9801017] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D.H. Lyth and Y. Rodriguez, The inflationary prediction for primordial non-Gaussianity, Phys. Rev. Lett. 95 (2005) 121302 [astro-ph/0504045] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    H. Kodama and M. Sasaki, Cosmological perturbation theory, Prog. Theor. Phys. Suppl. 78 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept. 215 (1992) 203 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    K.A. Malik and D. Wands, Cosmological perturbations, Phys. Rept. 475 (2009) 1 [arXiv:0809.4944] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    X. Chen, M.-X. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Burrage, R.H. Ribeiro and D. Seery, Large slow-roll corrections to the bispectrum of noncanonical inflation, JCAP 07 (2011) 032 [arXiv:1103.4126] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J.-O. Gong and T. Tanaka, A covariant approach to general field space metric in multi-field inflation, JCAP 03 (2011) 015 [Erratum ibid. 02 (2012) E01] [arXiv:1101.4809] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J. Khoury and F. Piazza, Rapidly-varying speed of sound, scale invariance and non-Gaussian signatures, JCAP 07 (2009) 026 [arXiv:0811.3633] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Nakashima, R. Saito, Y.-I. Takamizu and J. Yokoyama, The effect of varying sound velocity on primordial curvature perturbations, Prog. Theor. Phys. 125 (2011) 1035 [arXiv:1009.4394] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  62. [62]
    M. Park and L. Sorbo, Sudden variations in the speed of sound during inflation: features in the power spectrum and bispectrum, arXiv:1201.2903 [INSPIRE].
  63. [63]
    S.-H.H. Tye and J. Xu, A meandering inflaton, Phys. Lett. B 683 (2010) 326 [arXiv:0910.0849] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Ana Achúcarro
    • 1
    • 2
  • Jinn-Ouk Gong
    • 3
  • Sjoerd Hardeman
    • 1
  • Gonzalo A. Palma
    • 4
  • Subodh P. Patil
    • 5
    • 6
  1. 1.Instituut-Lorentz for Theoretical PhysicsUniversiteit LeidenLeidenThe Netherlands
  2. 2.Department of Theoretical PhysicsUniversity of the Basque CountryBilbaoSpain
  3. 3.Theory Division, CERNGenève 23Switzerland
  4. 4.Physics Department, FCFMUniversidad de ChileSantiagoChile
  5. 5.Centre de Physique Théorique, Ecole Polytechnique and CNRSPalaiseau cedexFrance
  6. 6.Laboratoire de Physique Théorique, Ecole Normale SuperiéureParisFrance

Personalised recommendations