Advertisement

Off-shell construction of superconformal Chern-Simons theories in three dimensions

  • Masato Arai
  • Shin Sasaki
Article

Abstract

We propose an off-shell construction of three-dimensional \( \mathcal{N} = {3} \) and \( \mathcal{N} = {4} \) superconformal Abelian Chern-Simons theories in the projective superspace formalism. We also construct coupling terms among the gauge fields and matter hypermultiplets.

Keywords

Extended Supersymmetry Superspaces Chern-Simons Theories 

References

  1. [1]
    H.-C. Kao and K.-M. Lee, Selfdual Chern-Simons systems with an N = 3 extended supersymmetry, Phys. Rev. D 46 (1992) 4691 [hep-th/9205115] [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    H. Nishino and S.J. Gates Jr., Chern-Simons theories with supersymmetries in three-dimensions, Int. J. Mod. Phys. A 8 (1993) 3371 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    H. Nishino and S.J. Gates Jr., ℵ0 extended supergravity and Chern-Simons theories, Nucl. Phys. B 480 (1996) 573 [hep-th/9606090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R. Brooks and S.J. Gates Jr., Extended supersymmetry and super-BF gauge theories, Nucl. Phys. B 432 (1994) 205 [hep-th/9407147] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A. Gustavsson, Algebraic structures on parallel M 2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple M 2-branes, JHEP 05 (2008) 105 [arXiv:0803.3803] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 superconformal Chern-Simons theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons theories and M 2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    E. Ivanov, Chern-Simons matter systems with manifest N = 2 supersymmetry, Phys. Lett. B 268 (1991) 203 [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.J. Gates Jr. and H. Nishino, Remarks on the N = 2 supersymmetric Chern-Simons theories, Phys. Lett. B 281 (1992) 72 [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    M. Cederwall, N = 8 superfield formulation of the Bagger-Lambert-Gustavsson model, JHEP 09 (2008) 116 [arXiv:0808.3242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    M. Cederwall, Superfield actions for N = 8 and N = 6 conformal theories in three dimensions, JHEP 10 (2008) 070 [arXiv:0809.0318] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, Harmonic superspace: key to N = 2 supersymmetry theories, JETP Lett. 40 (1984) 912 [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P.S. Howe and M. Leeming, Harmonic superspaces in low dimensions, Class. Quant. Grav. 11 (1994) 2843 [hep-th/9408062] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  20. [20]
    B. Zupnik, Chern-Simons D = 3, N = 6 superfield theory, Phys. Lett. B 660 (2008) 254 [arXiv:0711.4680] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    B. Zupnik, Chern-Simons theory in SO(5)/U(2) harmonic superspace, Theor. Math. Phys. 157 (2008) 1550 [arXiv:0802.0801] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    I. Buchbinder et al., ABJM models in N = 3 harmonic superspace, JHEP 03 (2009) 096 [arXiv:0811.4774] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    A. Karlhede, U. Lindström and M. Roček, Selfinteracting tensor multiplets in N = 2 superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].ADSGoogle Scholar
  24. [24]
    U. Lindström and M. Roček, New hyperKähler metrics and new supermultiplets, Commun. Math. Phys. 115 (1988) 21 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  25. [25]
    U. Lindström and M. Roček, N = 2 super Yang-Mills theory in projective superspace, Commun. Math. Phys. 128 (1990) 191 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  26. [26]
    S.M. Kuzenko, Projective superspace as a double punctured harmonic superspace, Int. J. Mod. Phys. A 14 (1999) 1737 [hep-th/9806147] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    S.M. Kuzenko, J.-H. Park, G. Tartaglino-Mazzucchelli and R. Unge, Off-shell superconformal nonlinear σ-models in three dimensions, JHEP 01 (2011) 146 [arXiv:1011.5727] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Cherkis, V. Dotsenko and C. Sämann, On superspace actions for multiple M 2-branes, metric 3-algebras and their classification, Phys. Rev. D 79 (2009) 086002 [arXiv:0812.3127] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078 [hep-th/0411077] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the θ-angle in N =4 super Yang-Mills theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S.M. Kuzenko and I. Linch, William Divine, On five-dimensional superspaces, JHEP 02 (2006) 038 [hep-th/0507176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S.M. Kuzenko, Five-dimensional supersymmetric Chern-Simons action as a hypermultiplet quantum correction, Phys. Lett. B 644 (2007) 88 [hep-th/0609078] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    F. Gonzalez-Rey and R. von Unge, Feynman rules in N = 2 projective superspace. 2. Massive hypermultiplets, Nucl. Phys. B 516 (1998) 449 [hep-th/9711135] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Institute of Experimental and Applied PhysicsCzech Technical University in PraguePrague 2Czech Republic
  2. 2.Department of PhysicsKitasato UniversitySagamiharaJapan

Personalised recommendations