Advertisement

The FGK formalism for black p-branes in d dimensions

  • Antonio de Antonio Martín
  • Tomás Ortín
  • C. S. Shahbazi
Article

Abstract

We present a generalization to an arbitrary number of spacetime (d) and world-volume (p + 1) dimensions of the formalism proposed by Ferrara, Gibbons and Kallosh to study black holes (p = 0) in d = 4 dimensions. We include the special cases in which there can be dyonic and self- or anti-self-dual black branes. Most of the results valid for 4-dimensional black holes (relations between temperature, entropy and non-extremality parameter, and between entropy and black-hole potential on the horizon) are straightforwardly generalized.

We apply the formalism to the case of black strings in N = 2, d = 5 supergravity coupled to vector multiplets, in which the black-string potential can be expressed in terms of the dual central charge and work out an explicit example with one vector multiplet, determining supersymmetric and non-supersymmetric attractors and constructing the nonextremal black-string solutions that interpolate between them.

Keywords

p-branes Black Holes in String Theory String Duality 

References

  1. [1]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    S. Ferrara and R. Kallosh, Universality of supersymmetric attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    P. Meessen, T. Ortín and S. Vaula, All the timelike supersymmetric solutions of all ungauged D = 4 supergravities, JHEP 11 (2010) 072 [arXiv:1006.0239] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Galli, T. Ortín, J. Perz and C.S. Shahbazi, Non-extremal black holes of N = 2, D = 4 supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Mohaupt and O. Vaughan, The Hesse potential, the c-map and black hole solutions, arXiv:1112.2876 [INSPIRE].
  9. [9]
    P. Meessen, T. Ortín, J. Perz and C. Shahbazi, H-FGK formalism for black-hole solutions of N = 2, D = 4 and D = 5 supergravity, Phys. Lett. B 709 (2012) 260 [arXiv:1112.3332] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P. Meessen and T. Ortín, Non-extremal black holes of N = 2,d = 5 supergravity, Phys. Lett. B 707 (2012) 178 [arXiv:1107.5454] [INSPIRE].ADSGoogle Scholar
  11. [11]
    T. Mohaupt and K. Waite, Instantons, black holes and harmonic functions, JHEP 10 (2009) 058 [arXiv:0906.3451] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    T. Mohaupt and O. Vaughan, Non-extremal black holes, harmonic functions and attractor equations, Class. Quant. Grav. 27 (2010) 235008 [arXiv:1006.3439] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    T. Ortín, A simple derivation of supersymmetric extremal black hole attractors, Phys. Lett. B 700 (2011) 261 [arXiv:1103.2738] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P. Meessen, T. Ortín, J. Perz and C. Shahbazi, Black holes and black strings of N = 2, D = 5 supergravity in the H-FGK formalism,arXiv:1204.0507 [INSPIRE].
  15. [15]
    W. Chemissany, B. Janssen and T. Van Riet, Einstein branes, JHEP 10 (2011) 002 [arXiv:1107.1427] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren, et al., N = 2 supergravity in five-dimensions revisited, Class. Quant. Grav. 21 (2004) 3015 [hep-th/0403045] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  18. [18]
    J. Bellorín, P. Meessen and T. Ortín, All the supersymmetric solutions of N = 1,d = 5 ungauged supergravity, JHEP 01 (2007) 020 [hep-th/0610196] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five-dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  20. [20]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J.B. Gutowski and W. Sabra, General supersymmetric solutions of five-dimensional supergravity, JHEP 10 (2005) 039 [hep-th/0505185] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    T. Ortín, Gravity and strings, Cambridge Unversity Press, Cambridge U.K. (2004).MATHCrossRefGoogle Scholar
  23. [23]
    B. Janssen, P. Smyth, T. Van Riet and B. Vercnocke, A first-order formalism for timelike and spacelike brane solutions, JHEP 04 (2008) 007 [arXiv:0712.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante and T. Van Riet, Generating geodesic flows and supergravity solutions, Nucl. Phys. B 812 (2009) 343 [arXiv:0806.2310] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F. Tangherlini, Schwarzschild field in N dimensions and the dimensionality of space problem, Nuovo Cim. 27 (1963) 636 [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    A. Agnese and M. La Camera, Gravitation without black holes, Phys. Rev. D 31 (1985) 1280 [INSPIRE].ADSGoogle Scholar
  27. [27]
    A.I. Janis, E.T. Newman and J. Winicour, , Phys. Rev. Lett. 20 (1968) 878 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R.C. Myers and M. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys. 172 (1986) 304 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  29. [29]
    R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Antonio de Antonio Martín
    • 1
  • Tomás Ortín
    • 1
  • C. S. Shahbazi
    • 1
  1. 1.Instituto de Física Teórica UAM/CSICMadridSpain

Personalised recommendations