Advertisement

Collinear and soft limits of multi-loop integrands in \( \mathcal{N} = 4 \) Yang-Mills

  • John Golden
  • Marcus Spradlin
Article

Abstract

It has been argued in arXiv:1112.6432 that the planar four-point integrand in \( \mathcal{N} = 4 \) super Yang-Mills theory is uniquely determined by dual conformal invariance together with the absence of a double pole in the integrand of the logarithm in the limit as a loop integration variable becomes collinear with an external momentum. In this paper we reformulate this condition in a simple way in terms of the amplitude itself, rather than its logarithm, and verify that it holds for two- and three-loop MHV integrands for n > 4. We investigate the extent to which this collinear constraint and a constraint on the soft behavior of integrands can be used to determine integrands. We find an interesting complementarity whereby the soft constraint becomes stronger while the collinear constraint becomes weaker at larger n. For certain reasonable choices of basis at two and three loops the two constraints in unison appear strong enough to determine MHV integrands uniquely for all n.

Keywords

Supersymmetric gauge theory Scattering Amplitudes 

References

  1. [1]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E.I. Buchbinder and F. Cachazo, Two-loop amplitudes of gluons and octa-cuts in N = 4 super Yang-Mills, JHEP 11 (2005) 036 [hep-th/0506126] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Z. Bern, J. Carrasco, H. Johansson and D. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    F. Cachazo and D. Skinner, On the structure of scattering amplitudes in N = 4 super Yang-Mills and N = 8 supergravity, arXiv:0801.4574 [INSPIRE].
  6. [6]
    S. Caron-Huot, Loops and trees, JHEP 05 (2011) 080 [arXiv:1007.3224] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    R.H. Boels, On BCFW shifts of integrands and integrals, JHEP 11 (2010) 113 [arXiv:1008.3101] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    L. Mason and D. Skinner, The complete planar S-matrix of \( \mathcal{N} = 4 \) SYM as a Wilson loop in twistor space, Journal of High Energy Physics 12 (2010) 18 [arXiv:1009.2225].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Belitsky, G. Korchemsky and E. Sokatchev, Are scattering amplitudes dual to super Wilson loops?, Nucl. Phys. B 855 (2012) 333 [arXiv:1103.3008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    T. Adamo, M. Bullimore, L. Mason and D. Skinner, Scattering Amplitudes and Wilson Loops in Twistor Space, J. Phys. A 44 (2011) 454008 [arXiv:1104.2890] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering amplitudes, JHEP 12 (2011) 002 [arXiv:1007.3246] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Eden, G.P. Korchemsky and E. Sokatchev, More on the duality correlators/amplitudes, Phys. Lett. B 709 (2012) 247 [arXiv:1009.2488] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: Part I, arXiv:1103.3714 [INSPIRE].
  17. [17]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: Part II, arXiv:1103.4353 [INSPIRE].
  18. [18]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Hidden symmetry of four-point correlation functions and amplitudes in N = 4 SYM, arXiv:1108.3557 [INSPIRE].
  19. [19]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Constructing the correlation function of four stress-tensor multiplets and the four-particle amplitude in N = 4 SYM, arXiv:1201.5329 [INSPIRE].
  20. [20]
    J.L. Bourjaily, A. DiRe, A. Shaikh, M. Spradlin and A. Volovich, The Soft-Collinear Bootstrap: N = 4 Yang-Mills Amplitudes at Six and Seven Loops, JHEP 03 (2012) 032 [arXiv:1112.6432] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.M. Drummond and J.M. Henn, Simple loop integrals and amplitudes in N = 4 SYM, JHEP 05 (2011) 105 [arXiv:1008.2965] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    V. Del Duca, C. Duhr and V.A. Smirnov, An Analytic Result for the Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, arXiv:1012.6032 [INSPIRE].
  28. [28]
    J. Gluza, K. Kajda and D.A. Kosower, Towards a Basis for Planar Two-Loop Integrals, Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473 [INSPIRE].
  30. [30]
    S. Caron-Huot and J.M. Henn, unpublished.Google Scholar
  31. [31]
    Online Encyclopedia of Integer Sequences, sequence number A006918.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsBrown UniversityProvidenceUSA

Personalised recommendations