Constraints on LVS compactifications of IIB string theory

  • S. P. de Alwis


We argue that once all theoretical and phenomenological constraints are imposed on the different versions of the Large Volume Scenario (LVS) compactifications of type IIB string theory, one particular version is favored. This is essentially a sequestered one in which the soft terms are generated by Weyl anomaly and RG running effects. We alsoshow that arguments questioning sequestering in LVS models are not relevant in this case.


Supersymmetry Phenomenology Strings and branes phenomenology 


  1. [1]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S. de Alwis, String phenomenology and the cosmological constant, Phys. Lett. B 647 (2007) 194 [hep-th/0607148] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M. Cicoli, C. Burgess and F. Quevedo, Anisotropic modulus stabilisation: strings at LHC scales with micron-sized extra dimensions, JHEP 10 (2011) 119 [arXiv:1105.2107] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Brustein and S.P. de Alwis, Moduli potentials in string compactifications with fluxes: mapping the discretuum, Phys. Rev. D 69 (2004) 126006 [hep-th/0402088] [INSPIRE].ADSGoogle Scholar
  6. [6]
    K. Choi, H.P. Nilles, C.S. Shin and M. Trapletti, Sparticle spectrum of large volume compactification, JHEP 02 (2011) 047 [arXiv:1011.0999] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.P. Conlon and F.G. Pedro, Moduli redefinitions and moduli stabilisation, JHEP 06 (2010) 082 [arXiv:1003.0388] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J.P. Conlon, S.S. AbdusSalam, F. Quevedo and K. Suruliz, Soft SUSY breaking terms for chiral matter in IIB string compactifications, JHEP 01 (2007) 032 [hep-th/0610129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. Blumenhagen, S. Moster and E. Plauschinn, Moduli stabilisation versus chirality for MSSM like type IIB orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Cicoli, C. Mayrhofer and R. Valandro, Moduli stabilisation for chiral global models, JHEP 02 (2012) 062 [arXiv:1110.3333] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Blumenhagen, J. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY breaking in local string/F-theory models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S. de Alwis, Classical and quantum SUSY breaking effects in IIB local models, JHEP 03 (2010) 078 [arXiv:0912.2950] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    H. Baer, S. de Alwis, K. Givens, S. Rajagopalan and H. Summy, Gaugino anomaly mediated SUSY breaking: phenomenology and prospects for the LHC, JHEP 05 (2010) 069 [arXiv:1002.4633] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. de Alwis and K. Givens, Dark matter density and the Higgs mass in LVS string phenomenology, arXiv:1203.5796 [INSPIRE].
  15. [15]
    M.A. Luty, Supersymmetry breaking, published in TASI 2004, Physics in D ≥ 4, June 6-July 2, Boulder, U.S.A. (2004).Google Scholar
  16. [16]
    H. Jockers and J. Louis, The effective action of D7-branes in N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 705 (2005) 167 [hep-th/0409098] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    J.P. Conlon, D. Cremades and F. Quevedo, Kähler potentials of chiral matter fields for Calabi-Yau string compactifications, JHEP 01 (2007) 022 [hep-th/0609180] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    C. Lütken, Geometry of the Z fold, J. Phys. A 21 (1988) 1889 [INSPIRE].ADSGoogle Scholar
  19. [19]
    V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [INSPIRE].ADSGoogle Scholar
  20. [20]
    V. Kaplunovsky and J. Louis, Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys. B 422 (1994) 57 [hep-th/9402005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Berg, D. Marsh, L. McAllister and E. Pajer, Sequestering in string compactifications, JHEP 06 (2011) 134 [arXiv:1012.1858] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    J.P. Conlon and L.T. Witkowski, Scattering and sequestering of blow-up moduli in local string models, JHEP 12 (2011) 028 [arXiv:1109.4153] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21 [hep-th/0312232] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of ColoradoBoulderUSA

Personalised recommendations