Naturally split supersymmetry

Open Access


Nonobservation of superparticles till date, new Higgs mass limits from the CMS and ATLAS experiments, WMAP constraints on relic density, various other low energy data, and the naturalness consideration, all considered simultaneously imply a paradigm shift of supersymmetric model building. In this paper we perform, for the first time, a detailed numerical study of brane-world induced supersymmetry breaking for both minimal and next-to-minimal scenarios. We observe that a naturally hierarchical spectrum emerges through an interplay of bulk, brane-localized and quasi-localized fields, which can gain more relevance in the subsequent phases of the LHC run.


Supersymmetry Phenomenology Strings and branes phenomenology 


  1. [1]
    H. Baer, V. Barger and P. Huang, Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider, JHEP 11 (2011) 031 [arXiv:1107.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Diego, G. von Gersdorff and M. Quirós, The MSSM from Scherk-Schwarz supersymmetry breaking, Phys. Rev. D 74 (2006) 055004 [hep-ph/0605024] [INSPIRE].ADSGoogle Scholar
  4. [4]
    J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J. Scherk and J.H. Schwarz, Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].ADSGoogle Scholar
  6. [6]
    A. Pomarol and M. Quirós, The standard model from extra dimensions, Phys. Lett. B 438 (1998) 255 [hep-ph/9806263] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Delgado, A. Pomarol and M. Quirós, Supersymmetry and electroweak breaking from extra dimensions at the TeV scale, Phys. Rev. D 60 (1999) 095008 [hep-ph/9812489] [INSPIRE].ADSGoogle Scholar
  8. [8]
    I. Antoniadis, S. Dimopoulos, A. Pomarol and M. Quirós, Soft masses in theories with supersymmetry breaking by TeV compactification, Nucl. Phys. B 544 (1999) 503 [hep-ph/9810410] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Delgado and M. Quirós, Supersymmetry and finite radiative electroweak breaking from an extra dimension, Nucl. Phys. B 607 (2001) 99 [hep-ph/0103058] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    D. Marti and A. Pomarol, Supersymmetric theories with compact extra dimensions in N = 1 superfields, Phys. Rev. D 64 (2001) 105025 [hep-th/0106256] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    D.E. Kaplan and N. Weiner, Radion mediated supersymmetry breaking as a Scherk-Schwarz theory, hep-ph/0108001 [INSPIRE].
  13. [13]
    G. von Gersdorff and M. Quirós, Supersymmetry breaking on orbifolds from Wilson lines, Phys. Rev. D 65 (2002) 064016 [hep-th/0110132] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J.A. Casas, J.R. Espinosa and I. Hidalgo, The MSSM fine tuning problem: a way out, JHEP 01 (2004) 008 [hep-ph/0310137] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D. Wright, Naturally nonminimal supersymmetry, hep-ph/9801449 [INSPIRE].
  16. [16]
    R. Barbieri and G.F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    ATLAS collaboration, F. Gianotti, Update of standard model Higgs searches in ATLAS, talk given at CERN Public Seminar, CERN, Geneva Switzerland, 13 Dec 2011.Google Scholar
  20. [20]
    CMS collaboration, G. Tonelli, Update on the SM Higgs Search with CMS, talk given at CERN Public Seminar, CERN, Geneva Switzerland, 13 Dec 2011.Google Scholar
  21. [21]
    CMS collaboration, S. Chatrchyan et al., Inclusive search for squarks and gluinos in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Rev. D 85 (2012) 012004 [arXiv:1107.1279] [INSPIRE].ADSGoogle Scholar
  22. [22]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].ADSGoogle Scholar
  23. [23]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: a program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  24. [24]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  25. [25]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Delgado, A. Pomarol and M. Quirós, Electroweak and flavor physics in extensions of the standard model with large extra dimensions, JHEP 01 (2000) 030 [hep-ph/9911252] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  28. [28]
    Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [INSPIRE].
  29. [29]
    T. Gherghetta and A. Pomarol, The standard model partly supersymmetric, Phys. Rev. D 67 (2003) 085018 [hep-ph/0302001] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    J.F. Gunion and S. Mrenna, A study of SUSY signatures at the Tevatron in models with near mass degeneracy of the lightest chargino and neutralino, Phys. Rev. D 62 (2000) 015002 [hep-ph/9906270] [INSPIRE].ADSGoogle Scholar
  31. [31]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    D. Diego, G. von Gersdorff and M. Quirós, Supersymmetry and electroweak breaking in the interval, JHEP 11 (2005) 008 [hep-ph/0505244] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.Saha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Institut de Physique Théorique, CEA-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations