Advertisement

Eluding SUSY at every genus on stable closed string vacua

  • Sergio L. Cacciatori
  • Matteo A. Cardella
Article
  • 41 Downloads

Abstract

In closed string vacua, ergodicity of unipotent flows provide a key for relating vacuum stability to the UV behavior of spectra and interactions. Infrared finiteness at all genera in perturbation theory can be rephrased in terms of cancelations involving only tree-level closed strings scattering amplitudes. This provides quantitative results on the allowed deviations from supersymmetry on perturbative stable vacua. From a mathematical perspective, diagrammatic relations involving closed string amplitudes suggest a relevance of unipotent flows dynamics for the Schottky problem and for the construction of the superstring measure.

Keywords

Superstring Vacua Supersymmetry Breaking 

References

  1. [1]
    C. Angelantonj, M. Cardella, S. Elitzur and E. Rabinovici, Vacuum stability, string density of states and the Riemann zeta function, JHEP 02 (2011) 024 [arXiv:1012.5091] [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    M. Cardella, A novel method for computing torus amplitudes for \( {\mathbb{Z}_N} \) orbifolds without the unfolding technique, JHEP 05 (2009) 010 [arXiv:0812.1549] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    M.A. Cardella, Error Estimates in Horocycle Averages Asymptotics: Challenges from String Theory, arXiv:1012.2754 [SPIRES].
  4. [4]
    S.L. Cacciatori and M. Cardella, Equidistribution Rates, Closed String Amplitudes and the Riemann Hypothesis, JHEP 12 (2010) 025 [arXiv:1007.3717] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    S.L. Cacciatori and M.A. Cardella, Uniformization, Unipotent Flows and the Riemann Hypothesis, arXiv:1102.1201 [SPIRES].
  6. [6]
    S.L. Cacciatori and M.A. Cardella, Unipotent Flows reductions of modular integrals over the Schottky locus, in progress.Google Scholar
  7. [7]
    S.L. Cacciatori, M.A. Cardella and F. Dalla Piazza, Genus-two reductions of genus-three superstring amplitudes via unipotent flows, in progress.Google Scholar
  8. [8]
    S.L. Cacciatori and F. Dalla Piazza, Two loop superstring amplitudes and S 6 representations, Lett. Math. Phys. 83 (2008) 127 [arXiv:0707.0646] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    S.L. Cacciatori, F. Dalla Piazza and B. van Geemen, Modular Forms and Three Loop Superstring Amplitudes, Nucl. Phys. B 800 (2008) 565 [arXiv:0801.2543] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    S.L. Cacciatori, F.D. Piazza and B. van Geemen, Genus four superstring measures, Lett. Math. Phys. 85 (2008) 185 [arXiv:0804.0457] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  11. [11]
    K.R. Dienes, Modular invariance, finiteness and misaligned supersymmetry: New constraints on the numbers of physical string states, Nucl. Phys. B 429 (1994) 533 [hep-th/9402006] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [SPIRES].
  13. [13]
    F.D. Piazza and B. van Geemen, Siegel modular forms and finite symplectic groups, Adv. Theor. Math. Phys. 13 (2009) 1771.MathSciNetMATHGoogle Scholar
  14. [14]
    E. D’Hoker and D.H. Phong, Two-Loop Superstrings I, Main Formulas, Phys. Lett. B 529 (2002) 241 [hep-th/0110247] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    E. D’Hoker and D.H. Phong, Two-Loop Superstrings II, The Chiral Measure on Moduli Space, Nucl. Phys. B 636 (2002) 3 [hep-th/0110283] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    E. D’Hoker and D.H. Phong, Two-Loop Superstrings III, Slice Independence and Absence of Ambiguities, Nucl. Phys. B 636 (2002) 61 [hep-th/0111016] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    E. D’Hoker and D.H. Phong, Two-Loop Superstrings IV, The Cosmological Constant and Modular Forms, Nucl. Phys. B 639 (2002) 129 [hep-th/0111040] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    E. D’Hoker and D.H. Phong, Asyzygies, modular forms and the superstring measure. I, Nucl. Phys. B 710 (2005) 58 [hep-th/0411159] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    E. D’Hoker and D.H. Phong, Asyzygies, modular forms and the superstring measure. II, Nucl. Phys. B 710 (2005) 83 [hep-th/0411182] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    F.D. Piazza, D. Girola and S.L. Cacciatori, Classical theta constants vs. lattice theta series and super string partition functions, JHEP 11 (2010) 082 [arXiv:1009.4133] [SPIRES].CrossRefGoogle Scholar
  21. [21]
    S.G. Dani and J. Smillie, Uniform distribution of horocycle orbits for Fuchsian groups, Duke Math. J. 51 (1984) 185.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    M. Einsiedler and T. Ward, Ergodic Theory with a view towards Number Theory, Springer Graduate Text in Mathematics Volume 259.Google Scholar
  23. [23]
    M. Einsiedler, G. Margulis and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Inven. Math. 177 (2009) 137.MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    M. Einsiedler, E. Lindenstrauss, P. Michel and A. Ven, Distribution of periodic torus orbits and Duke’s theorem for cubic fields, to appear in Annals of Mathematics [arXiv:0708.1113].
  25. [25]
    H. Furstenberg, The Unique Ergodicity of the Horocycle Flow, Recent Advances in Topological Dynamics, A. Beck (ed.), Springer Verlag Lect. Notes 318 (1972) 95.Google Scholar
  26. [26]
    D. Francia and A. Sagnotti, Free geometric equations for higher spins, Phys. Lett. B 543 (2002) 303 [hep-th/0207002] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    S. Grushevsky, The Schottky Problem, to appear in the proceedings of Classical algebraic geometry today, workshop (MSRI, January 2009).Google Scholar
  28. [28]
    S. Grushevsky, Superstring scattering amplitudes in higher genus, Commun. Math. Phys. 287 (2009) 749 [arXiv:0803.3469] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  29. [29]
    S. Grushevsky and R.S. Manni, The superstring cosmological constant and the Schottky form in genus 5, arXiv:0809.1391 [SPIRES].
  30. [30]
    S. Grushevsky and R. Salvati Manni, The vanishing of two-point functions for three-loop superstring scattering amplitudes, Commun. Math. Phys. 294 (2010) 343 [arXiv:0806.0354] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    G.A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936) 530.MathSciNetCrossRefGoogle Scholar
  32. [32]
    D. Kutasov and N. Seiberg, Number of degrees of freedom, density of states and tachyons in string theory and CFT, Nucl. Phys. B 358 (1991) 600 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    A. Morozov, NSR Superstring Measures Revisited, JHEP 05 (2008) 086 [arXiv:0804.3167] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    M. Matone and R. Volpato, Getting superstring amplitudes by degenerating Riemann surfaces, Nucl. Phys. B 839 (2010) 21 [arXiv:1003.3452] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    M. Matone and R. Volpato, Superstring measure and non-renormalization of the three-point amplitude, Nucl. Phys. B 806 (2009) 735 [arXiv:0806.4370] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    M. Matone and R. Volpato, Higher genus superstring amplitudes from the geometry of moduli spaces, Nucl. Phys. B 732 (2006) 321 [hep-th/0506231] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    M. Ratner, Distribution rigidity for unipotent actions on homogeneous spaces, Bull. Amer. Math. Soc. 24 (1991) 321.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    M. Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991) 235.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    A. Sagnotti, private communication.Google Scholar
  40. [40]
    A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    D. Zagier, Eisenstein Series and the Riemann zeta function, Automorphic Forms, Representation Theory and Arithmetic, Stud. Math. 10 (1981) 275.MathSciNetGoogle Scholar
  42. [42]
    D. Zagier, The Rankin-Selberg method for authomorphic functions which are not of rapid decay, J. Fac. Sci. Tokyo (1981).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Physics and MathematicsUniversità dell’InsubriaComoItaly
  2. 2.INFN, Sezione di MilanoMilanoItaly
  3. 3.Department of PhysicsUniversità di Milano BicoccaMilanoItaly

Personalised recommendations