Advertisement

Wilson loop remainder function for null polygons in the limit of self-crossing

  • Harald Dorn
  • Sebastian Wuttke
Article

Abstract

The remainder function of Wilson loops for null polygons becomes divergent if two vertices approach each other. We apply RG techniques to the limiting configuration of a contour with self-intersection. As a result for the two loop remainder we find a quadratic divergence in the logarithm of the distance between the two approaching vertices. The divergence is multiplied by a factor, which is given by a pure number plus the product of two logarithms of cross-ratios characterising the conformal geometry of the self-crossing.

Keywords

Duality in Gauge Field Theories Renormalization Group AdS-CFT Correspondence 

References

  1. [1]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Antide-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic Bubble Ansatz, arXiv:0911.4708 [SPIRES].
  9. [9]
    L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for Scattering Amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [SPIRES].MathSciNetGoogle Scholar
  10. [10]
    V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    V. Del Duca, C. Duhr and V.A. Smirnov, A Two-Loop Octagon Wilson Loop in N = 4 SYM, JHEP 09 (2010) 015 [arXiv:1006.4127] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, arXiv:1102.0062 [SPIRES].
  14. [14]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Bootstrapping Null Polygon Wilson Loops, JHEP 03 (2011) 092 [arXiv:1010.5009] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    Z. Komargodski, On collinear factorization of Wilson loops and MHV amplitudes in N = 4 SYM, JHEP 05 (2008) 019 [arXiv:0801.3274] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    R.A. Brandt, F. Neri and M.A. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [SPIRES].ADSGoogle Scholar
  18. [18]
    R.A. Brandt, A. Gocksch, M.A. Sato and F. Neri, Loop space, Phys. Rev. D 26 (1982) 3611 [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    H. Dorn, Renormalization of path ordered phase factors and related hadron operators in gauge field theories, Fortsch. Phys. 34 (1986) 11 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    I.A. Korchemskaya and G.P. Korchemsky, High-energy scattering in QCD and cross singularities of Wilson loops, Nucl. Phys. B 437 (1995) 127 [hep-ph/9409446] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [SPIRES].ADSGoogle Scholar
  22. [22]
    G. Georgiou, Null Wilson loops with a self-crossing and the Wilson loop/amplitude conjecture, JHEP 09 (2009) 021 [arXiv:0904.4675] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    L.N. Lipatov and A. Prygarin, Mandelstam cuts and light-like Wilson loops in N = 4 SUSY, Phys. Rev. D 83 (2011) 045020 [arXiv:1008.1016] [SPIRES].ADSGoogle Scholar
  24. [24]
    J. Bartels, L.N. Lipatov and A. Prygarin, MHV amplitude for 3 → 3 gluon scattering in Regge limit, arXiv:1012.3178 [SPIRES].
  25. [25]
    A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP 02 (2010) 081 [arXiv:0910.3653] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Brandhuber et al., A Surprise in the Amplitude/Wilson Loop Duality, JHEP 07 (2010) 080 [arXiv:1004.2855] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    C. Anastasiou et al., Two-Loop Polygon Wilson Loops in N = 4 SYM, JHEP 05 (2009) 115 [arXiv:0902.2245] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institut für Physik der Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations