Solving the μ problem with a heavy Higgs boson

  • Roberto Franceschini
  • Stefania Gori


We discuss the generation of the μ-term in a class of supersymmetric models characterized by a low energy effective superpotential containing a term λSH 1 H 2 with a large coupling λ ∼ 2. These models generically predict a lightest Higgs boson well above the LEP limit of 114 GeV and have been shown to be compatible with the unification of gauge couplings. Here we discuss a specific example where the superpotential has no dimensionful parameters and we point out the relation between the generated μ-term and the mass of the lightest Higgs boson. We discuss the fine-tuning of the model and we find that the generation of a phenomenologically viable μ-term fits very well with a heavy lightest Higgs boson and a low degree of fine-tuning.

We discuss experimental constraints from collider direct searches, precision data, thermal relic dark matter abundance, and WIMP searches finding that the most natural region of the parameter space is still allowed by current experiments. We analyse bounds on the masses of the superpartners coming from Naturalness arguments and discuss the main signatures of the model for the LHC and future WIMP searches.


Higgs Physics Beyond Standard Model Supersymmetric Standard Model 


  1. [1]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].ADSGoogle Scholar
  2. [2]
    A. Brignole, J.A. Casas, J.R. Espinosa and I. Navarro, Low-scale supersymmetry breaking: Effective description, electroweak breaking and phenomenology, Nucl. Phys. B 666 (2003) 105 [hep-ph/0301121] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    M. Dine, N. Seiberg and S. Thomas, Higgs Physics as a Window Beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [SPIRES].ADSGoogle Scholar
  4. [4]
    M. Carena, K. Kong, E. Ponton and J. Zurita, Supersymmetric Higgs Bosons and Beyond, Phys. Rev. D 81 (2010) 015001 [arXiv:0909.5434] [SPIRES].ADSGoogle Scholar
  5. [5]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, MSSM Higgs with dimension-six operators, Nucl. Phys. B 831 (2010) 133 [arXiv:0910.1100] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, MSSM with Dimension-five Operators (MSSM 5 ), Nucl. Phys. B 808 (2009) 155 [arXiv:0806.3778] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, Higher Dimensional Operators in the MSSM, AIP Conf. Proc. 1078 (2009) 175 [arXiv:0809.4598] [SPIRES].ADSGoogle Scholar
  8. [8]
    I. Antoniadis, E. Dudas and D.M. Ghilencea, Supersymmetric Models with Higher Dimensional Operators, JHEP 03 (2008) 045 [arXiv:0708.0383] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    K. Tobe and J.D. Wells, Higgs boson mass limits in perturbative unification theories, Phys. Rev. D 66 (2002) 013010 [hep-ph/0204196] [SPIRES].ADSGoogle Scholar
  10. [10]
    J.R. Espinosa and M. Quirós, Gauge unification and the supersymmetric light Higgs mass, Phys. Rev. Lett. 81 (1998) 516 [hep-ph/9804235] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [SPIRES].ADSGoogle Scholar
  12. [12]
    K.S. Babu, I. Gogoladze and C. Kolda, Perturbative unification and Higgs boson mass bounds, hep-ph/0410085 [SPIRES].
  13. [13]
    A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    P. Batra, A. Delgado, D.E. Kaplan and T.M.P. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A Non Standard Supersymmetric Spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    P. Lodone, Naturalness bounds in extensions of the MSSM without a light Higgs boson, JHEP 05 (2010) 068 [arXiv:1004.1271] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [SPIRES].ADSGoogle Scholar
  18. [18]
    S. Chang, C. Kilic and R. Mahbubani, The new fat Higgs: Slimmer and more attractive, Phys. Rev. D 71 (2005) 015003 [hep-ph/0405267] [SPIRES].ADSGoogle Scholar
  19. [19]
    A. Delgado and T.M.P. Tait, A fat Higgs with a fat top, JHEP 07 (2005) 023 [hep-ph/0504224] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Birkedal, Z. Chacko and Y. Nomura, Relaxing the upper bound on the mass of the lightest supersymmetric Higgs boson, Phys. Rev. D 71 (2005) 015006 [hep-ph/0408329] [SPIRES].ADSGoogle Scholar
  21. [21]
    R. Barbieri, L.J. Hall, A.Y. Papaioannou, D. Pappadopulo and V.S. Rychkov, An alternative NMSSM phenomenology with manifest perturbative unification, JHEP 03 (2008) 005 [arXiv:0712.2903] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    M. Masip, R. Muñoz-Tapia and A. Pomarol, Limits on the mass of the lightest Higgs in supersymmetric models, Phys. Rev. D 57 (1998) R5340 [hep-ph/9801437] [SPIRES].ADSGoogle Scholar
  23. [23]
    R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a Light Higgs Boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [SPIRES].ADSGoogle Scholar
  24. [24]
    L. Cavicchia, R. Franceschini and V.S. Rychkov, Supersymmetry without a light Higgs boson at the LHC, Phys. Rev. D 77 (2008) 055006 [arXiv:0710.5750] [SPIRES].ADSGoogle Scholar
  25. [25]
    G.R. Dvali, G.F. Giudice and A. Pomarol, The μ-Problem in Theories with Gauge-Mediated Supersymmetry Breaking, Nucl. Phys. B 478 (1996) 31 [hep-ph/9603238] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [SPIRES].ADSGoogle Scholar
  27. [27]
    M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [SPIRES].ADSGoogle Scholar
  28. [28]
    A. de Gouvêa, A. Friedland and H. Murayama, Next-to-minimal supersymmetric standard model with the gauge mediation of supersymmetry breaking, Phys. Rev. D 57 (1998) 5676 [hep-ph/9711264] [SPIRES].ADSGoogle Scholar
  29. [29]
    Z. Chacko and E. Ponton, Yukawa deflected gauge mediation, Phys. Rev. D 66 (2002) 095004 [hep-ph/0112190] [SPIRES].ADSGoogle Scholar
  30. [30]
    T.S. Roy and M. Schmaltz, A hidden solution to the μ/B μ problem in gauge mediation, Phys. Rev. D 77 (2008) 095008 [arXiv:0708.3593] [SPIRES].ADSGoogle Scholar
  31. [31]
    H. Murayama, Y. Nomura and D. Poland, More Visible Effects of the Hidden Sector, Phys. Rev. D 77 (2008) 015005 [arXiv:0709.0775] [SPIRES].ADSGoogle Scholar
  32. [32]
    G.F. Giudice, H.D. Kim and R. Rattazzi, Natural μ and B μ in gauge mediation, Phys. Lett. B 660 (2008) 545 [arXiv:0711.4448] [SPIRES].ADSGoogle Scholar
  33. [33]
    C. Csáki, A. Falkowski, Y. Nomura and T. Volansky, New Approach to the μB μ Problem of Gauge-Mediated Supersymmetry Breaking, Phys. Rev. Lett. 102 (2009) 111801 [arXiv:0809.4492] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    G.F. Giudice and A. Masiero, A Natural Solution to the μ Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [SPIRES].ADSGoogle Scholar
  36. [36]
    A. Delgado, G.F. Giudice and P. Slavich, Dynamical μ Term in Gauge Mediation, Phys. Lett. B 653 (2007) 424 [arXiv:0706.3873] [SPIRES].ADSGoogle Scholar
  37. [37]
    J. Cao and J.M. Yang, Current experimental constraints on NMSSM with large lambda, Phys. Rev. D 78 (2008) 115001 [arXiv:0810.0989] [SPIRES].ADSGoogle Scholar
  38. [38]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    J.C. Romao, Spontaneous CP-violation in susy models: a no go theorem, Phys. Lett. B 173 (1986) 309 [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    J.P. Derendinger and C.A. Savoy, Quantum Effects and SU(2) × U(1) Breaking in Supergravity Gauge Theories, Nucl. Phys. B 237 (1984) 307 [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    N.K. Falck, Renormalization Group Equations for Softly Broken Supersymmetry: The Most General Case, Z. Phys. C 30 (1986) 247 [SPIRES].ADSGoogle Scholar
  42. [42]
    R.B. Nevzorov and M.A. Trusov, Renormalization of the soft SUSY breaking terms in the strong Yukawa coupling limit in the NMSSM, Phys. Atom. Nucl. 64 (2001) 1513 [hep-ph/0112301] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Particle spectrum in supersymmetric models with a gauge singlet, Phys. Lett. B 315 (1993) 331 [hep-ph/9307322] [SPIRES].ADSGoogle Scholar
  44. [44]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Phenomenology of supersymmetric models with a singlet, Nucl. Phys. B 492 (1997) 21 [hep-ph/9611251] [SPIRES].ADSGoogle Scholar
  45. [45]
    R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    M. Bastero-Gil, C. Hugonie, S.F. King, D.P. Roy and S. Vempati, Does LEP prefer the NMSSM?, Phys. Lett. B 489 (2000) 359 [hep-ph/0006198] [SPIRES].ADSGoogle Scholar
  47. [47]
    P.C. Schuster and N. Toro, Persistent fine-tuning in supersymmetry and the NMSSM, hep-ph/0512189 [SPIRES].
  48. [48]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [hep-ph/9311340] [SPIRES].ADSGoogle Scholar
  49. [49]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  50. [50]
    LEP Higgs Working Group for Higgs boson searches collaboration, Search for charged Higgs bosons: Preliminary combined results using LEP data collected at energies up to 209-GeV, hep-ex/0107031 [SPIRES].
  51. [51]
    ALEPH collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
  53. [53]
    The LEP Electroweak Working Group,
  54. [54]
    P. Hut, Limits on masses and number of neutral weakly interacting particles, Phys. Lett. B 69 (1977) 85 [SPIRES].ADSGoogle Scholar
  55. [55]
    B.W. Lee and S. Weinberg, Cosmological lower bound on heavy-neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    M.I. Vysotsky, A.D. Dolgov and Y.B. Zeldovich, Cosmological limits on the masses of neutral leptons, JETP Lett. 26 (1977) 188 [SPIRES].ADSGoogle Scholar
  57. [57]
    H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    M. Drees and M.M. Nojiri, The Neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [SPIRES].ADSGoogle Scholar
  59. [59]
    N. Jarosik et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors and Basic Results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    B.R. Greene and P.J. Miron, Supersymmetric cosmology with a gauge singlet, Phys. Lett. B 168 (1986) 226 [SPIRES].MathSciNetADSGoogle Scholar
  61. [61]
    S.A. Abel, S. Sarkar and I.B. Whittingham, Neutralino dark matter in a class of unified theories, Nucl. Phys. B 392 (1993) 83 [hep-ph/9209292] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    R. Flores, K.A. Olive and D. Thomas, A new dark matter candidate in the minimal extension of the supersymmetric standard model, Phys. Lett. B 245 (1990) 509 [SPIRES].ADSGoogle Scholar
  63. [63]
    K.A. Olive and D. Thomas, A Light dark matter candidate in an extended supersymmetric model, Nucl. Phys. B 355 (1991) 192 [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [SPIRES].Google Scholar
  65. [65]
    V. Barger, P. Langacker and H.-S. Lee, Lightest neutralino in extensions of the MSSM, Phys. Lett. B 630 (2005) 85 [hep-ph/0508027] [SPIRES].ADSGoogle Scholar
  66. [66]
    The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    XENON collaboration, J. Angle et al., First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].ADSCrossRefGoogle Scholar
  68. [68]
    R. Barbieri, M. Frigeni and G.F. Giudice, Dark matter neutralinos in supergravity theories, Nucl. Phys. B 313 (1989) 725 [SPIRES].ADSCrossRefGoogle Scholar
  69. [69]
    M.W. Goodman and E. Witten, Detectability of certain dark-matter candidates, Phys. Rev. D 31 (1985) 3059 [SPIRES].ADSGoogle Scholar
  70. [70]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs Boson Interactions with Nucleons, Phys. Lett. B 78 (1978) 443 [SPIRES].ADSGoogle Scholar
  71. [71]
    J.R. Ellis, K.A. Olive and C. Savage, Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [SPIRES].ADSGoogle Scholar
  72. [72]
    J. Giedt, A.W. Thomas and R.D. Young, Dark matter, the CMSSM and lattice QCD, Phys. Rev. Lett. 103 (2009) 201802 [arXiv:0907.4177] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    M. Farina, D. Pappadopulo and A. Strumia, CDMS stands for Constrained Dark Matter Singlet, Phys. Lett. B 688 (2010) 329 [arXiv:0912.5038] [SPIRES].ADSGoogle Scholar
  74. [74]
    J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct Dark Matter searches after CDMS-II results, JCAP 02 (2010) 014 [arXiv:0912.4264] [SPIRES].ADSGoogle Scholar
  75. [75]
    Z. Chacko, Y. Nomura and D. Tucker-Smith, A minimally fine-tuned supersymmetric standard model, Nucl. Phys. B 725 (2005) 207 [hep-ph/0504095] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    S. Ferrara and E. Remiddi, Absence of the Anomalous Magnetic Moment in a Supersymmetric Abelian Gauge Theory, Phys. Lett. B 53 (1974) 347 [SPIRES].ADSGoogle Scholar
  77. [77]
    R. Barbieri and D. Pappadopulo, S-particles at their naturalness limits, JHEP 10 (2009) 061 [arXiv:0906.4546] [SPIRES].ADSCrossRefGoogle Scholar
  78. [78]
    D. Dominici, G. Dewhirst, A. Nikitenko, S. Gennai and L. Fano, Search for radion decays into Higgs boson pairs in the γγbb, τ + tau bb and bbbb final state, CMS-NOTE-2005-007.Google Scholar
  79. [79]
    R. Franceschini and R. Torre, Resonances with tau, lepton and bottom signatures at the early LHC, in preparation.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institute de Theorie des Phenomenes PhysiquesEcole Polytechnique Federale de LausanneLausanneSwitzerland
  2. 2.Physik DepartmentTechnische Universität MünchenGarchingGermany
  3. 3.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany

Personalised recommendations