Anomalous transport coefficients from Kubo formulas in Holography

  • Irene Amado
  • Karl Landsteiner
  • Francisco Pena-Benitez


In the presence of dense matter quantum anomalies give rise to two new transport phenomena. An anomalous current is generated either by an external magnetic field or through vortices in the fluid carrying the anomalous charge. The associated transport coefficients are the anomalous magnetic and vortical conductivities. Whereas a Kubo formula for the anomalous magnetic conductivity is well known we develop a new Kubo type formula that allows the calculation of the vortical conductivity through a two point function of the anomalous current and the energy current. We also point out that the anomalous vortical conductivity can be understood as a response to a gravitomagnetic field. We apply these Kubo formulas to a simple holographic system, the R-charged black hole.


Holography and quark-gluon plasmas Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence Anomalies in Field and String Theories 


  1. [1]
    A. Deshpande et al., Workshop on P- and CP-odd Effects in Hot and Dense Matter, Brookhaven National Laboratory, RIKEN Research Center Workshop, April 2010.Google Scholar
  2. [2]
    A.Y. Alekseev, V.V. Cheianov and J. Fröhlich, Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly, cond-mat/9803346 [SPIRES].
  3. [3]
    M. Giovannini and M.E. Shaposhnikov, Primordial hypermagnetic fields and triangle anomaly, Phys. Rev. D 57 (1998) 2186 [hep-ph/9710234] [SPIRES].ADSGoogle Scholar
  4. [4]
    D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions: ’Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [SPIRES].ADSGoogle Scholar
  6. [6]
    D.E. Kharzeev and H.J. Warringa, Chiral Magnetic conductivity, Phys. Rev. D 80 (2009) 034028 [arXiv:0907.5007] [SPIRES].ADSGoogle Scholar
  7. [7]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, Real-time dynamics of the Chiral Magnetic Effect, Phys. Rev. Lett. 104 (2010) 212001 [arXiv:1002.2495] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    K. Fukushima, D.E. Kharzeev and H.J. Warringa, Electric-current Susceptibility and the Chiral Magnetic Effect, Nucl. Phys. A 836 (2010) 311 [arXiv:0912.2961] [SPIRES].ADSGoogle Scholar
  9. [9]
    B. Müller and A. Schafer, Charge Fluctuations from the Chiral Magnetic Effect in Nuclear Collisions, Phys. Rev. C 82 (2010) 057902 [arXiv:1009.1053] [SPIRES].ADSGoogle Scholar
  10. [10]
    V.D. Orlovsky and V.I. Shevchenko, Towards a quantum theory of chiral magnetic effect, Phys. Rev. D 82 (2010) 094032 [arXiv:1008.4977] [SPIRES].ADSGoogle Scholar
  11. [11]
    S. Pu, J.-h. Gao and Q. Wang, A consistent description of kinetic equation with triangle anomaly, arXiv:1008.2418 [SPIRES].
  12. [12]
    S.-i. Nam, Vector current correlation and charge separation via chiral magnetic effect, Phys. Rev. D 82 (2010) 045017 [arXiv:1004.3444] [SPIRES].ADSGoogle Scholar
  13. [13]
    W.-j. Fu, Y.-x. Liu and Y.-l. Wu, Chiral Magnetic Effect and QCD Phase Transitions with Effective Models, arXiv:1003.4169 [SPIRES].
  14. [14]
    M. Asakawa, A. Majumder and B. Müller, Electric Charge Separation in Strong Transient Magnetic Fields, Phys. Rev. C 81 (2010) 064912 [arXiv:1003.2436] [SPIRES].ADSGoogle Scholar
  15. [15]
    K. Fukushima, M. Ruggieri and R. Gatto, Chiral magnetic effect in the PNJL model, Phys. Rev. D 81 (2010) 114031 [arXiv:1003.0047] [SPIRES].ADSGoogle Scholar
  16. [16]
    W.-J. Fu, Y.-L. Wu and Y.-X. 2Liu, Chiral Magnetic Effect and Chiral Phase Transition, Commun. Theor. Phys. 55 (2011) 123 [arXiv:1002.0418] [SPIRES].ADSMATHCrossRefGoogle Scholar
  17. [17]
    S.-i. Nam, Chiral magnetic effect (CME) at low temperature from instanton vacuum, arXiv:0912.1933 [SPIRES].
  18. [18]
    D.E. Kharzeev, Topologically induced local P and CP-violation in QCD x QED, Annals Phys. 325 (2010) 205 [arXiv:0911.3715] [SPIRES].ADSMATHCrossRefGoogle Scholar
  19. [19]
    D.K. Hong, Anomalous currents in dense matter under a magnetic field, arXiv:1010.3923 [SPIRES].
  20. [20]
    K. Fukushima and M. Ruggieri, Dielectric correction to the Chiral Magnetic Effect, Phys. Rev. D 82 (2010) 054001 [arXiv:1004.2769] [SPIRES].ADSGoogle Scholar
  21. [21]
    P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov, Numerical evidence of chiral magnetic effect in lattice gauge theory, Phys. Rev. D 80 (2009) 054503 [arXiv:0907.0494] [SPIRES].ADSGoogle Scholar
  22. [22]
    M. Abramczyk, T. Blum, G. Petropoulos and R. Zhou, Chiral magnetic effect in 2+1 flavor QCD+QED, PoS(LAT2009)181 [arXiv:0911.1348] [SPIRES].
  23. [23]
    P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov, Numerical study of chiral magnetic effect in quenched SU(2) lattice gauge theory, PoS(LAT2009)080 [arXiv:0910.4682] [SPIRES].
  24. [24]
    D.E. Kharzeev and H.-U. Yee, Chiral Magnetic Wave, Phys. Rev. D 83 (2011) 085007 [arXiv:1012.6026] [SPIRES].ADSGoogle Scholar
  25. [25]
    A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    H.-U. Yee, Holographic Chiral Magnetic Conductivity, JHEP 11 (2009) 085 [arXiv:0908.4189] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    A. Rebhan, A. Schmitt and S. Stricker, Holographic chiral currents in a magnetic field, Prog. Theor. Phys. Suppl. 186 (2010) 463 [arXiv:1007.2494] [SPIRES].ADSMATHCrossRefGoogle Scholar
  28. [28]
    A. Gorsky, P.N. Kopnin and A.V. Zayakin, On the Chiral Magnetic Effect in Soft-Wall AdS/QCD, Phys. Rev. D 83 (2011) 014023 [arXiv:1003.2293] [SPIRES].ADSGoogle Scholar
  29. [29]
    A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic Anomalous Conductivities and the Chiral Magnetic Effect, JHEP 02 (2011) 110 [arXiv:1005.2587] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    V.A. Rubakov, On chiral magnetic effect and holography, arXiv:1005.1888 [SPIRES].
  31. [31]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    D.E. Kharzeev and D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions, Phys. Rev. Lett. 106 (2011) 062301 [arXiv:1010.0038] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    B. Keren-Zur and Y. Oz, Hydrodynamics and the Detection of the QCD Axial Anomaly in Heavy Ion Collisions, JHEP 06 (2010) 006 [arXiv:1002.0804] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    A.V. Sadofyev and M.V. Isachenkov, The chiral magnetic effect in hydrodynamical approach, Phys. Lett. B 697 (2011) 404 [arXiv:1010.1550] [SPIRES].ADSGoogle Scholar
  37. [37]
    M. Torabian and H.-U. Yee, Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-Abelian symmetries, JHEP 08 (2009) 020 [arXiv:0903.4894] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    Y. Neiman and Y. Oz, Relativistic Hydrodynamics with General Anomalous Charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    T. Kalaydzhyan and I. Kirsch, Fluid/gravity model for the chiral magnetic effect, arXiv:1102.4334 [SPIRES].
  40. [40]
    N.P. Landsman and C.G. van Weert, Real and Imaginary Time Field Theory at Finite Temperature and Density, Phys. Rept. 145 (1987) 141 [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    T.S. Evans, The Condensed Matter Limit of Relativistic QFT, hep-ph/9510298 [SPIRES].
  42. [42]
    J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    Y. Matsuo, S.-J. Sin, S. Takeuchi and T. Tsukioka, Magnetic conductivity and Chern-Simons Term in Holographic Hydrodynamics of Charged AdS Black Hole, JHEP 04 (2010) 071 [arXiv:0910.3722] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    B. Sahoo and H.-U. Yee, Holographic chiral shear waves from anomaly, Phys. Lett. B 689 (2010) 206 [arXiv:0910.5915] [SPIRES].ADSGoogle Scholar
  45. [45]
    K. Landsteiner, E. Megias and F. Pena-Benitez, work in progress.Google Scholar
  46. [46]
    J.M. Luttinger, Theory of Thermal Transport Coefficients, Phys. Rev. 135 (1964) A1505.MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    A.V. Sadofyev, V.I. Shevchenko and V.I. Zakharov, Notes on chiral hydrodynamics within effective theory approach, arXiv:1012.1958 [SPIRES].
  48. [48]
    B. Mashhoon, Gravitoelectromagnetism: A Brief Review, gr-qc/0311030 [SPIRES].
  49. [49]
    V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  50. [50]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    I. Amado, M. Kaminski and K. Landsteiner, Hydrodynamics of Holographic Superconductors, JHEP 05 (2009) 021 [arXiv:0903.2209] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    M. Kaminski, K. Landsteiner, J. Mas, J.P. Shock and J. Tarrio, Holographic Operator Mixing and Quasinormal Modes on the Brane, JHEP 02 (2010) 021 [arXiv:0911.3610] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Irene Amado
    • 1
  • Karl Landsteiner
    • 2
  • Francisco Pena-Benitez
    • 2
  1. 1.SISSATriesteItaly
  2. 2.Instituto de Física Teórica CSIC-UAM, c/ Nicolás Cabrera 13-15Universidad Autónoma de MadridMadridSpain

Personalised recommendations