Advertisement

Dualities between \( \mathcal{N} = 8 \) superconformal field theories in three dimensions

  • Denis Bashkirov
  • Anton Kapustin
Article

Abstract

We show that an infinite family of \( \mathcal{N} = 6 \) d = 3 superconformal Chern-Simons-matter theories has hidden \( \mathcal{N} = 8 \) superconformal symmetry and hidden parity on the quantum level. This family of theories is different from the one found by Aharony, Bergman, Jafferis and Maldacena, as well as from the theories constructed by Bagger and Lambert, and Gustavsson. We also test several conjectural dualities between BLG theories and ABJ theories by comparing superconformal indices of these theories.

Keywords

Extended Supersymmetry Duality in Gauge Field Theories Chern-Simons Theories 

References

  1. [1]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple M2-branes, JHEP 05 (2008) 105 [arXiv:0803.3803] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for superconformal field theories in 3, 5 and 6 dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S. Kim, The complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [arXiv:0903.4172] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    S. Sethi, A relation between N = 8 gauge theories in three dimensions, JHEP 11 (1998) 003 [hep-th/9809162] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    N. Lambert and D. Tong, Membranes on an orbifold, Phys. Rev. Lett. 101 (2008) 041602 [arXiv:0804.1114] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, M2-branes on M-folds, JHEP 05 (2008) 038 [arXiv:0804.1256] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    N. Lambert and C. Papageorgakis, Relating U(N) × U(N) to SU(N) × SU(N) Chern-Simons membrane theories, JHEP 04 (2010) 104 [arXiv:1001.4779] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M.K. Benna, I.R. Klebanov and T. Klose, Charges of monopole operators in Chern-Simons Yang-Mills theory, JHEP 01 (2010) 110 [arXiv:0906.3008] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Gustavsson and S.-J. Rey, Enhanced N = 8 supersymmetry of ABJM theory on R(8) and R(8)/Z(2), arXiv:0906.3568 [SPIRES].
  15. [15]
    O.-K. Kwon, P. Oh and J. Sohn, Notes on supersymmetry enhancement of ABJM theory, JHEP 08 (2009) 093 [arXiv:0906.4333] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like duality in three dimensions, arXiv:1012.4021 [SPIRES].
  17. [17]
    V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge theories and magnetic charge, Nucl. Phys. B 125 (1977) 1 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    E. Witten, SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [SPIRES].
  20. [20]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J. Bhattacharya and S. Minwalla, Superconformal indices for \( \mathcal{N} = 6 \) Chern Simons theories, JHEP 01 (2009) 014 [arXiv:0806.3251] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations