Advertisement

A manifestly MHV Lagrangian for \( \mathcal{N} = 4 \) Yang-Mills

  • Sudarshan Ananth
  • Stefano Kovacs
  • Sarthak Parikh
Article

Abstract

We derive a manifestly MHV Lagrangian for the \( \mathcal{N} = 4 \) supersymmetric Yang-Mills theory in light-cone superspace. This is achieved by constructing a canonical redefinition which maps the \( \mathcal{N} = 4 \) superfield, ϕ, and its conjugate, \( \bar{\phi } \), to a new pair of superfields, χ and \( \tilde{\chi } \). In terms of these new superfields the \( \mathcal{N} = 4 \) Lagrangian takes a (non-polynomial) manifestly MHV form, containing vertices involving two superfields of negative helicity and an arbitrary number of superfields of positive helicity. We also discuss constraints satisfied by the new superfields, which ensure that they describe the correct degrees of freedom in the \( \mathcal{N} = 4 \) supermultiplet. We test our derivation by showing that an expansion of our superspace Lagrangian in component fields reproduces the correct gluon MHV vertices.

Keywords

Supersymmetric gauge theory Extended Supersymmetry Superspaces 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetMATHGoogle Scholar
  4. [4]
    A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, hep-th/0604151 [SPIRES].
  5. [5]
    S. Gukov and E. Witten, Gauge theory, ramification and the geometric Langlands program, hep-th/0612073 [SPIRES].
  6. [6]
    E. Witten, Geometric Langlands And The Equations Of Nahm And Bogomolny, arXiv:0905.4795 [SPIRES].
  7. [7]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, arXiv:1012.3982 [SPIRES].
  8. [8]
    Z. Bajnok, A. Hegedus, R.A. Janik and T. Lukowski, Five loop Konishi from AdS/CFT, Nucl. Phys. B 827 (2010) 426 [arXiv:0906.4062] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    B.S. DeWitt, Quantum theory of gravity. III. Applications of the covariant theory, Phys. Rev. 162 (1967) 1239 [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56 (1986) 2459 [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    V.P. Nair, A Current Algebra For Some Gauge Theory Amplitudes, Phys. Lett. B 214 (1988) 215 [SPIRES].ADSGoogle Scholar
  13. [13]
    M.L. Mangano and S.J. Parke, Multi-Parton Amplitudes in Gauge Theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [SPIRES].
  15. [15]
    Z. Bern, L.J. Dixon and D.A. Kosower, On-Shell Methods in Perturbative QCD, Annals Phys. 322 (2007) 1587 [arXiv:0704.2798] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  16. [16]
    F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    R. Britto, F. Cachazo and B. Feng, New Recursion Relations for Tree Amplitudes of Gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct Proof Of Tree-Level Recursion Relation In Yang-Mills Theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    A. Brandhuber, B.J. Spence and G. Travaglini, One-loop gauge theory amplitudes in \( \mathcal{N} = 4 \) super Yang-Mills from MHV vertices, Nucl. Phys. B 706 (2005) 150 [hep-th/0407214] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    A. Gorsky and A. Rosly, From Yang-Mills Lagrangian to MHV diagrams, JHEP 01 (2006) 101 [hep-th/0510111] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    P. Mansfield, The Lagrangian origin of MHV rules, JHEP 03 (2006) 037 [hep-th/0511264] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    J.H. Ettle and T.R. Morris, Structure of the MHV-rules Lagrangian, JHEP 08 (2006) 003 [hep-th/0605121] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    H. Feng and Y.-t. Huang, MHV lagrangian for \( \mathcal{N} = 4 \) super Yang-Mills, JHEP 04 (2009) 047 [hep-th/0611164] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV Amplitudes in \( \mathcal{N} = 4 \) Super Yang-Mills and W ilson Loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in \( \mathcal{N} = 4 \) super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the \( \mathcal{N} = 4 \) super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    R. Ricci, A.A. Tseytlin and M. Wolf, On T-duality and Integrability for Strings on AdS Backgrounds, JHEP 12 (2007) 082 [arXiv:0711.0707] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    N. Berkovits and J. Maldacena, Fermionic T-duality, Dual Superconformal Symmetry and the Amplitude/Wilson Loop Connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual Superconformal Symmetry from AdS 5 × S 5 Superstring Integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    L.V. Avdeev, O.V. Tarasov and A.A. Vladimirov, Vanishing Of The Three Loop Charge Renormalization Function In A Supersymmetric Gauge Theory, Phys. Lett. B 96 (1980) 94 [SPIRES].ADSGoogle Scholar
  36. [36]
    M.T. Grisaru, M. Roček and W. Siegel, Zero Three Loop β-function in N = 4 Super Yang-Mills Theory, Phys. Rev. Lett. 45 (1980) 1063 [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    M.F. Sohnius and P.C. West, Conformal Invariance in N = 4 Supersymmetric Yang-Mills Theory, Phys. Lett. B 100 (1981) 245 [SPIRES].ADSGoogle Scholar
  38. [38]
    W.E. Caswell and D. Zanon, Zero Three Loop β-function in the \( \mathcal{N} = 4 \) Supersymmetric Yang-Mills Theory, Nucl. Phys. B 182 (1981) 125 [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    P.S. Howe, K.S. Stelle and P.K. Townsend, Miraculous Ultraviolet Cancellations in Supersymmetry Made Manifest, Nucl. Phys. B 236 (1984) 125 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    S. Mandelstam, Light Cone Superspace and the Ultraviolet Finiteness of the \( \mathcal{N} = 4 \) Model, Nucl. Phys. B 213 (1983) 149 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    L. Brink, O. Lindgren and B.E.W. Nilsson, The Ultraviolet Finiteness of the \( \mathcal{N} = 4 \) Yang-Mills Theory, Phys. Lett. B 123 (1983) 323 [SPIRES].ADSGoogle Scholar
  42. [42]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in \( \mathcal{N} = 4 \) super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, arXiv:1007.3243 [SPIRES].
  44. [44]
    B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering amplitudes, arXiv:1007.3246 [SPIRES].
  45. [45]
    B. Eden, G.P. Korchemsky and E. Sokatchev, More on the duality correlators/amplitudes, arXiv:1009.2488 [SPIRES].
  46. [46]
    L. Brink, O. Lindgren and B.E.W. Nilsson, \( \mathcal{N} = 4 \) Yang-Mills Theory on the Light Cone, Nucl. Phys. B 212 (1983) 401 [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    M. Bianchi, H. Elvang and D.Z. Freedman, Generating Tree Amplitudes in \( \mathcal{N} = 4 \) SYM and \( \mathcal{N} = 8 \) SG, JHEP 09 (2008) 063 [arXiv:0805.0757] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion Relations, Generating Functions and Unitarity Sums in \( \mathcal{N} = 4 \) SYM Theory, JHEP 04 (2009) 009 [arXiv:0808.1720] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    H. Elvang, D.Z. Freedman and M. Kiermaier, Solution to the Ward Identities for Superamplitudes, JHEP 10 (2010) 103 [arXiv:0911.3169] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    H. Elvang, D.Z. Freedman and M. Kiermaier, SUSY Ward identities, Superamplitudes and Counterterms, arXiv:1012.3401 [SPIRES].
  51. [51]
    V.V. Khoze, Amplitudes in the beta-deformed conformal Yang-Mills, JHEP 02 (2006) 040 [hep-th/0512194] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    S. Ananth, S. Kovacs and H. Shimada, Proof of all-order finiteness for planar beta-deformed Yang-Mills, JHEP 01 (2007) 046 [hep-th/0609149] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    S. Ananth, S. Kovacs and H. Shimada, Proof of ultra-violet finiteness for a planar non-supersymmetric Yang-Mills theory, Nucl. Phys. B 783 (2007) 227 [hep-th/0702020] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    S. Ananth, L. Brink, S.-S. Kim and P. Ramond, Non-linear realization of PSU(2, 2|4) on the light-cone, Nucl. Phys. B 722 (2005) 166 [hep-th/0505234] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Sudarshan Ananth
    • 1
  • Stefano Kovacs
    • 2
  • Sarthak Parikh
    • 1
  1. 1.Indian Institute of Science Education and ResearchPuneIndia
  2. 2.Dublin Institute for Advanced StudiesDublin 4Ireland

Personalised recommendations