Advertisement

Holographic entanglement entropy: near horizon geometry and disconnected regions

  • Erik Tonni
Article

Abstract

We study the finite term of the holographic entanglement entropy for the charged black hole in AdS d+2 and other examples of black holes when the spatial region in the boundary theory is given by one or two parallel strips. For one large strip it scales like the width of the strip. The divergent term of its expansion as the turning point of the minimal surface approaches the horizon is determined by the near horizon geometry. Examples involving a Lifshitz scaling are also considered. For two equal strips in the boundary we study the transition of the mutual information given by the holographic prescription. In the case of the charged black hole, when the width of the strips becomes large this transition provides a characteristic finite distance depending on the temperature.

Keywords

AdS-CFT Correspondence Black Holes 

References

  1. [1]
    M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [SPIRES].
  5. [5]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [SPIRES].MathSciNetGoogle Scholar
  6. [6]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [SPIRES].MathSciNetGoogle Scholar
  11. [11]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    J.L.F. Barbon and C.A. Fuertes, A note on the extensivity of the holographic entanglement entropy, JHEP 05 (2008) 053 [arXiv:0801.2153] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J.L.F. Barbon and C.A. Fuertes, Holographic entanglement entropy probes (non)locality, JHEP 04 (2008) 096 [arXiv:0803.1928] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. Caraglio and F. Gliozzi, Entanglement entropy and twist fields, JHEP 11 (2008) 076 [arXiv:0808.4094] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S. Furukawa, V. Pasquier and J. Shiraishi, Mutual information and compactification radius in a c = 1 critical phase in one dimension, arXiv:0809.5113 [SPIRES].
  16. [16]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. (2009) P11001 [arXiv:0905.2069] [SPIRES].
  17. [17]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. (2011) P01021 [arXiv:1011.5482] [SPIRES].
  18. [18]
    V. Alba, L. Tagliacozzo and P. Calabrese, Entanglement entropy of two disjoint blocks in critical Ising models, arXiv:0910.0706 [SPIRES].
  19. [19]
    M. Fagotti and P. Calabrese, Entanglement entropy of two disjoint blocks in XY chains, J. Stat. Mech. (2010) P04016 [arXiv:1003.1110] [SPIRES].
  20. [20]
    H. Casini, C.D. Fosco and M. Huerta, Entanglement and α entropies for a massive Dirac field in two dimensions, J. Stat. Mech. (2005) P07007 [cond-mat/0505563] [SPIRES].
  21. [21]
    H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP 03 (2009) 048 [arXiv:0812.1773] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    H. Casini and M. Huerta, Reduced density matrix and internal dynamics for multicomponent regions, Class. Quant. Grav. 26 (2009) 185005 [arXiv:0903.5284] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy, JHEP 02 (2007) 042 [hep-th/0608213] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    V.E. Hubeny and M. Rangamani, Holographic entanglement entropy for disconnected regions, JHEP 03 (2008) 006 [arXiv:0711.4118] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [SPIRES].ADSGoogle Scholar
  27. [27]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Emergent quantum near-criticality from baryonic black branes, JHEP 03 (2010) 093 [arXiv:0911.0400] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [SPIRES].ADSGoogle Scholar
  29. [29]
    S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  30. [30]
    K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    T. Azeyanagi, T. Nishioka and T. Takayanagi, Near extremal black hole entropy as entanglement entropy via AdS 2 /CFT 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations