Analytical computation of critical exponents in several holographic superconductors



It is very interesting that all holographic superconductors, such as s-wave, p-wave and d-wave holographic superconductors, show the universal mean-field critical exponent 1/2 at the critical temperature, just like Gindzburg-Landau (G-L) theory for second order phase transitions. Now it is believed that the universal critical exponents appear because the dual gravity theory is classic in the large N limit. However, even in the large N limit there is an exception called “non-mean-field theory”: an extension of the s-wave model with a cubic term of the charged scalar field shows a different critical exponent 1. In this paper, we try to use analytical methods to obtain the critical exponents for these models to see how the properties of the gravity action decides the appearance of the mean-field behaviors. It will be seen that just like the G-L theory, it is the fundamental symmetries rather than the detailed parameters of the bulk theory that lead to the universal properties of the holographic superconducting phase transition. The feasibility of the called “non-mean-field theory” is also discussed.


Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetMATHGoogle Scholar
  4. [4]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  6. [6]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M.M. Roberts and S.A. Hartnoll, Pseudogap and time reversal breaking in a holographic superconductor, JHEP 08 (2008) 035 [arXiv:0805.3898] [SPIRES].CrossRefGoogle Scholar
  10. [10]
    J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards A Holographic Model of D-Wave Superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [SPIRES].ADSGoogle Scholar
  11. [11]
    F. Benini, C.P. Herzog and A. Yarom, Holographic Fermi arcs and a d-wave gap, arXiv:1006.0731 [SPIRES].
  12. [12]
    F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].ADSGoogle Scholar
  14. [14]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    K. Peeters, J. Powell and M. Zamaklar, Exploring colourful holographic superconductors, JHEP 09 (2009) 101 [arXiv:0907.1508] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    G. Siopsis and J. Therrien, Analytic calculation of properties of holographic superconductors, JHEP 05 (2010) 013 [arXiv:1003.4275] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    K. Maeda and T. Okamura, Characteristic length of an AdS/CFT superconductor, Phys. Rev. D 78 (2008) 106006 [arXiv:0809.3079] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  23. [23]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [SPIRES].ADSGoogle Scholar
  25. [25]
    G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [SPIRES].
  26. [26]
    S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [SPIRES].Google Scholar
  27. [27]
    P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    S. Franco, A.M. Garcia-Garcia and D. Rodriguez-Gomez, A holographic approach to phase transitions, Phys. Rev. D 81 (2010) 041901 [arXiv:0911.1354] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    S. Franco, A. Garcia-Garcia and D. Rodriguez-Gomez, A general class of holographic superconductors, JHEP 04 (2010) 092 [arXiv:0906.1214] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    C.P. Herzog, An Analytic Holographic Superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [SPIRES].ADSGoogle Scholar
  31. [31]
    D. Arean, P. Basu and C. Krishnan, The Many Phases of Holographic Superfluids, JHEP 10 (2010) 006 [arXiv:1006.5165] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    K. Maeda, M. Natsuume and T. Okamura, Universality class of holographic superconductors, Phys. Rev. D 79 (2009) 126004 [arXiv:0904.1914] [SPIRES].ADSGoogle Scholar
  33. [33]
    M. Natsuume and T. Okamura, Dynamic universality class of large-N gauge theories, Phys. Rev. D 83 (2011) 046008 [arXiv:1012.0575] [SPIRES].ADSGoogle Scholar
  34. [34]
    T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm, arXiv:1010.4036 [SPIRES].
  35. [35]
    I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, arXiv:1010.1264 [SPIRES].
  36. [36]
    D. Nickel and D.T. Son, Deconstructing holographic liquids, arXiv:1009.3094 [SPIRES].
  37. [37]
    P. Hartwan, Ordinary Differential Equations, second edition, SIAM, Philadelphia U.S.A. (2002).CrossRefGoogle Scholar
  38. [38]
    Huimin Shao, Mathematical Physics Method, Science Press, Beijing China (2004).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Hua-Bi Zeng
    • 1
  • Xin Gao
    • 2
  • Yu Jiang
    • 3
  • Hong-Shi Zong
    • 1
    • 4
  1. 1.Department of PhysicsNanjing UniversityNanjingChina
  2. 2.Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Center for Statistical and Theoretical Condensed Matter Physics & Department of PhysicsZhejiang Normal UniversityJinhuaChina
  4. 4.Joint Center for Particle, Nuclear Physics and CosmologyNanjing UniversityNanjingChina

Personalised recommendations