Advertisement

Infrared stability of \( \mathcal{N} = 2 \) Chern-Simons matter theories

  • Marco S. Bianchi
  • Silvia Penati
  • Massimo Siani
Article

Abstract

According to the AdS4/CFT3 correspondence, \( \mathcal{N} = 2 \) supersymmetric Chern-Simons matter theories should have a stable fixed point in the infrared. In order to support this prediction we study RG flows of two-level Chern-Simons matter theories with/without flavors induced by the most general marginal superpotential compatible with \( \mathcal{N} = 2 \) supersymmetry. At two loops we determine the complete spectrum of fixed points and study their IR stability. Our analysis covers a large class of models including perturbations of the ABJM/ABJ theories with and without flavors, \( \mathcal{N} = 2,3 \) theories with different CS levels corresponding to turning on a Romans mass and β-deformations. In all cases we find curves (or surfaces) of fixed points which are globally IR stable. Each fixed point has only one direction of stability which in the ABJM case coincides with the maximal global symmetry preserving perturbation, whereas along any other direction the system flows to a different fixed point on the surface. The motion within the surface is driven by perturbations which are exactly marginal. The question of conformal invariance vs. finiteness is also addressed: While in general vanishing beta-functions imply two-loop finiteness, we find a particular set of flavored theories where this is no longer true.

Keywords

Chern-Simons Theories Field Theories in Lower Dimensions Extended Supersymmetry 

References

  1. [1]
    A.S. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2 (1978) 247 [SPIRES].MATHCrossRefADSGoogle Scholar
  2. [2]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  3. [3]
    J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078 [hep-th/0411077] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the θ-angle in N = 4 super Yang-Mills theory, arXiv:0804.2907 [SPIRES].
  6. [6]
    H.-C. Kao and K.-M. Lee, Selfdual Chern-Simons systems with an N = 3 extended supersymmetry, Phys. Rev. D 46 (1992) 4691 [hep-th/9205115] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple M2-branes, JHEP 05 (2008) 105 [arXiv:0803.3803] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    A. Gustavsson and S.-J. Rey, Enhanced N = 8 supersymmetry of ABJM theory on R 8 and R 8/Z 2, arXiv:0906.3568 [SPIRES].
  13. [13]
    O.-K. Kwon, P. Oh and J. Sohn, Notes on supersymmetry enhancement of ABJM theory, JHEP 08 (2009) 093 [arXiv:0906.4333] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    T. Nishioka and T. Takayanagi, On type IIA Penrose limit and N = 6 Chern-Simons theories, JHEP 08 (2008) 001 [arXiv:0806.3391] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040 [arXiv:0806.3951] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    J.A. Minahan, W. Schulgin and K. Zarembo, Two loop integrability for Chern-Simons theories with N = 6 supersymmetry, JHEP 03 (2009) 057 [arXiv:0901.1142] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    D. Gaiotto, S. Giombi and X. Yin, Spin chains in N = 6 superconformal Chern-Simons-matter theory, JHEP 04 (2009) 066 [arXiv:0806.4589] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    D. Bak and S.-J. Rey, Integrable spin chain in superconformal Chern-Simons theory, JHEP 10 (2008) 053 [arXiv:0807.2063] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    N. Gromov and P. Vieira, The all loop AdS 4/CFT 3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    D. Bak, D. Gang and S.-J. Rey, Integrable spin chain of superconformal U(M) × U(N) Chern-Simons theory, JHEP 10 (2008) 038 [arXiv:0808.0170] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    C. Kristjansen, M. Orselli and K. Zoubos, Non-planar ABJM theory and integrability, JHEP 03 (2009) 037 [arXiv:0811.2150] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    N. Gromov, V. Kazakov and P. Vieira, Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    B.I. Zwiebel, Two-loop integrability of planar N = 6 superconformal Chern-Simons theory, J. Phys. A 42 (2009) 495402 [arXiv:0901.0411] [SPIRES].MathSciNetGoogle Scholar
  24. [24]
    D. Bak, H. Min and S.-J. Rey, Integrability of N = 6 Chern-Simons theory at six loops and beyond, arXiv:0911.0689 [SPIRES].
  25. [25]
    D. Berenstein and D. Trancanelli, Three-dimensional N = 6 SCFT’s and their membrane dynamics, Phys. Rev. D 78 (2008) 106009 [arXiv:0808.2503] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    K. Hosomichi et al., A nonperturbative test of M2-brane theory, JHEP 11 (2008) 058 [arXiv:0809.1771] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    S. Kim, The complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [arXiv:0903.4172] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    M.M. Sheikh-Jabbari and J. Simon, On half-BPS states of the ABJM theory, JHEP 08 (2009) 073 [arXiv:0904.4605] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    M.K. Benna, I.R. Klebanov and T. Klose, Charges of monopole operators in Chern-Simons Yang-Mills theory, JHEP 01 (2010) 110 [arXiv:0906.3008] [SPIRES].CrossRefGoogle Scholar
  30. [30]
    D. Berenstein and J. Park, The BPS spectrum of monopole operators in ABJM: towards a field theory description of the giant torus, arXiv:0906.3817 [SPIRES].
  31. [31]
    S. Kim and K. Madhu, Aspects of monopole operators in N = 6 Chern-Simons theory, JHEP 12 (2009) 018 [arXiv:0906.4751] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    A. Giveon, D. Kutasov and O. Lunin, Spontaneous SUSY breaking in various dimensions, Nucl. Phys. B 822 (2009) 127 [arXiv:0904.2175] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    A. Amariti and M. Siani, R-symmetry and supersymmetry breaking in 3D WZ models, JHEP 08 (2009) 055 [arXiv:0905.4725] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    M. Schnabl and Y. Tachikawa, Classification of N = 6 superconformal theories of ABJM type, arXiv:0807.1102 [SPIRES].
  36. [36]
    M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories and AdS 4/CFT 3 correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and AdS 4/CFT 3, Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    A. Hanany and A. Zaffaroni, Tilings, Chern-Simons theories and M2 branes, JHEP 10 (2008) 111 [arXiv:0808.1244] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    S. Franco, A. Hanany, J. Park and D. Rodriguez-Gomez, Towards M2-brane theories for generic toric singularities, JHEP 12 (2008) 110 [arXiv:0809.3237] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    A. Hanany and Y.-H. He, M2-branes and quiver Chern-Simons: a taxonomic study, arXiv:0811.4044 [SPIRES].
  41. [41]
    E. Imeroni, On deformed gauge theories and their string/M-theory duals, JHEP 10 (2008) 026 [arXiv:0808.1271] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    D.L. Jafferis and A. Tomasiello, A simple class of N = 3 gauge/gravity duals, JHEP 10 (2008) 101 [arXiv:0808.0864] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015 [arXiv:0901.0969] [SPIRES].CrossRefGoogle Scholar
  44. [44]
    D. Gaiotto and A. Tomasiello, Perturbing gauge/gravity duals by a Romans mass, J. Phys. A 42 (2009) 465205 [arXiv:0904.3959] [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    I.L. Buchbinder et al., Quantum N = 3, D = 3 Chern-Simons matter theories in harmonic superspace, JHEP 10 (2009) 075 [arXiv:0909.2970] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    S. Hohenegger and I. Kirsch, A note on the holography of Chern-Simons matter theories with flavour, JHEP 04 (2009) 129 [arXiv:0903.1730] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    D. Gaiotto and D.L. Jafferis, Notes on adding D6 branes wrapping RP3 in AdS4 × CP 3, arXiv:0903.2175 [SPIRES].
  48. [48]
    Y. Hikida, W. Li and T. Takayanagi, ABJM with flavors and FQHE, JHEP 07 (2009) 065 [arXiv:0903.2194] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY 4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [SPIRES].CrossRefGoogle Scholar
  50. [50]
    D.L. Jafferis, Quantum corrections to N = 2 Chern-Simons theories with flavor and their AdS 4 duals, arXiv:0911.4324 [SPIRES].
  51. [51]
    L.J. Romans, Massive N = 2a supergravity in ten-dimensions, Phys. Lett. B 169 (1986) 374 [SPIRES].MathSciNetADSGoogle Scholar
  52. [52]
    P. de Medeiros, J. Figueroa-O’Farrill, E. Méndez-Escobar and P. Ritter, On the Lie-algebraic origin of metric 3-algebras, Commun. Math. Phys. 290 (2009) 871 [arXiv:0809.1086] [SPIRES].MATHCrossRefADSGoogle Scholar
  53. [53]
    P. de Medeiros, J. Figueroa-O’Farrill and E. Méndez-Escobar, Superpotentials for superconformal Chern-Simons theories from representation theory, J. Phys. A 42 (2009) 485204 [arXiv:0908.2125] [SPIRES].Google Scholar
  54. [54]
    B.E.W. Nilsson and C.N. Pope, Hopf fibration of eleven-dimensional supergravity, Class. Quant. Grav. 1 (1984) 499 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    M.S. Bianchi, S. Penati and M. Siani, Infrared stability of ABJ-like theories, JHEP 01 (2010) 080 [arXiv:0910.5200] [SPIRES].CrossRefGoogle Scholar
  56. [56]
    B.M. Zupnik and D.G. Pak, Superfield formulation of the simplest three-dimensional gauge theories and conformal supergravities, Theor. Math. Phys. 77 (1988) 1070 [SPIRES].CrossRefMathSciNetGoogle Scholar
  57. [57]
    B.M. Zupnik and D.G. Pak, Topologically massive gauge theories in superspace, Sov. Phys. J. 31 (1988) 962 [SPIRES].CrossRefGoogle Scholar
  58. [58]
    E.A. Ivanov, Chern-Simons matter systems with manifest N = 2 supersymmetry, Phys. Lett. B 268 (1991) 203 [SPIRES].ADSGoogle Scholar
  59. [59]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace, or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [SPIRES].Google Scholar
  60. [60]
    L.V. Avdeev, G.V. Grigorev and D.I. Kazakov, Renormalizations in Abelian Chern-Simons field theories with matter, Nucl. Phys. B 382 (1992) 561 [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    L.V. Avdeev, D.I. Kazakov and I.N. Kondrashuk, Renormalizations in supersymmetric and nonsupersymmetric nonAbelian Chern-Simons field theories with matter, Nucl. Phys. B 391 (1993) 333 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  62. [62]
    H.-C. Kao, K.-M. Lee and T. Lee, The Chern-Simons coefficient in supersymmetric Yang-Mills Chern-Simons theories, Phys. Lett. B 373 (1996) 94 [hep-th/9506170] [SPIRES].MathSciNetGoogle Scholar
  63. [63]
    M.T. Grisaru, W. Siegel and M. Roček, Improved methods for supergraphs, Nucl. Phys. B 159 (1979) 429 [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    N. Akerblom, C. Sämann and M. Wolf, Marginal deformations and 3-algebra structures, Nucl. Phys. B 826 (2010) 456 [arXiv:0906.1705] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    A. Mauri, S. Penati, A. Santambrogio and D. Zanon, Exact results in planar N = 1 superconformal Yang-Mills theory, JHEP 11 (2005) 024 [hep-th/0507282] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Marco S. Bianchi
    • 1
    • 2
  • Silvia Penati
    • 1
    • 2
  • Massimo Siani
    • 1
    • 2
  1. 1.Dipartimento di Fisica dell’Università degli studi di Milano-BicoccaMilanoItaly
  2. 2.INFN, Sezione di Milano-BicoccaMilanoItaly

Personalised recommendations