Advertisement

Comments on Galilean conformal field theories and their geometric realization

  • Dario Martelli
  • Yuji Tachikawa
Article

Abstract

We discuss non-relativistic conformal algebras generalizing the Schrödinger algebra. One instance of these algebras is a conformal, acceleration-extended, Galilei algebra, which arises also as a contraction of the relativistic conformal algebra. In two dimensions, this admits an “exotic” central extension, whereby boosts do not commute. We study general properties of non-relativistic conformal field theories with such symmetry. We realize geometrically the symmetry in terms of a metric invariant under the exotic conformal Galilei algebra, although its signature is neither Lorentzian nor Euclidean. We comment on holographic-type calculations in this background.

Keywords

Global Symmetries AdS-CFT Correspondence Space-Time Symmetries 

References

  1. [1]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007) 086004 [arXiv:0706.3746] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    G. Burdet, M. Perrin and P. Sorba, About the Non-Relativistic Structure of the Conformal Algebra, Commun. Math. Phys. 34 (1973) 85.MATHCrossRefMathSciNetADSGoogle Scholar
  8. [8]
    C. Duval, G. Burdet, H.P. Künzle and M. Perrin, Bargmann Structures and Newton-Cartan Theory, Phys. Rev. D 31 (1985) 1841 [SPIRES].ADSGoogle Scholar
  9. [9]
    C. Duval, G.W. Gibbons and P. Horváthy, Celestial Mechanics, Conformal Structures and Gravitational Waves, Phys. Rev. D 43 (1991) 3907 [hep-th/0512188] [SPIRES].ADSGoogle Scholar
  10. [10]
    A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    J. Negro, M.A. del Olmo and A. Rodríguez-Marco, Nonrelativistic Conformal Groups. I, J. Math. Phys. 38 (1997) 3786.MATHCrossRefMathSciNetADSGoogle Scholar
  13. [13]
    J. Negro, M. A. del Olmo and A. Rodríguez-Marco, Nonrelativistic Conformal Groups. II. Further Developments and Physical Applications, J. Math. Phys. 38 (1997) 3810.MATHCrossRefMathSciNetADSGoogle Scholar
  14. [14]
    C. Duval and P.A. Horváthy, The exotic Galilei group and the ’Peierls substitution’, Phys. Lett. B 479 (2000) 284 [hep-th/0002233] [SPIRES].ADSGoogle Scholar
  15. [15]
    S. Bhattacharyya, S. Minwalla and S.R. Wadia, The Incompressible Non-Relativistic Navier-Stokes Equation from Gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    I. Fouxon and Y. Oz, CFT Hydrodynamics: Symmetries, Exact Solutions and Gravity, JHEP 03 (2009) 120 [arXiv:0812.1266] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    P.A. Horváthy, Non-commutative mechanics, in mathematical & in condensed matter physics, SIGMA 2 (2006) 090 [cond-mat/0609571] [SPIRES].Google Scholar
  18. [18]
    P.C. Stichel and W.J. Zakrzewski, A New Type of Conformal Dynamics, Annals Phys. 310 (2004) 158 [hep-th/0309038] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  19. [19]
    J. Lukierski, P.C. Stichel and W.J. Zakrzewski, Acceleration-Extended Galilean Symmetries with Central Charges and their Dynamical Realizations, Phys. Lett. B 650 (2007) 203 [hep-th/0702179] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    C. Duval, M. Hassaine and P.A. Horváthy, The geometry of Schrödinger symmetry in gravity background/non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [SPIRES].MATHCrossRefADSGoogle Scholar
  21. [21]
    V. Bargmann, On Unitary ray representations of continuous groups, Annals Math. 59 (1954) 1 [SPIRES].CrossRefMathSciNetGoogle Scholar
  22. [22]
    E. İnönü and E.P. Wigner, On the Contraction of groups and their represenations, Proc. Nat. Acad. Sci. 39 (1953) 510 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  23. [23]
    R. Jackiw and V.P. Nair, Anyon spin and the exotic central extension of the planar Galilei group, Phys. Lett. B 480 (2000) 237 [hep-th/0003130] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    R. Jackiw and V.P. Nair, Remarks on the exotic central extension of the planar Galilei group, Phys. Lett. B 551 (2003) 166 [hep-th/0211119] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    C. Duval and P.A. Horváthy, Spin and exotic Galilean symmetry, Phys. Lett. B 547 (2002) 306 [hep-th/0209166] [SPIRES].ADSGoogle Scholar
  26. [26]
    J. Lukierski, P.C. Stichel and W.J. Zakrzewski, Exotic Galilean conformal symmetry and its dynamical realisations, Phys. Lett. A 357 (2006) 1 [hep-th/0511259] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from \( \mathcal{N} = 4 \) super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    M. Kruczenski and A.A. Tseytlin, Spiky strings, light-like Wilson loops and pp-wave anomaly, Phys. Rev. D 77 (2008) 126005 [arXiv:0802.2039] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    P.A. Horváthy and M.S. Plyushchay, Anyon wave equations and the noncommutative plane, Phys. Lett. B 595 (2004) 547 [hep-th/0404137] [SPIRES].ADSGoogle Scholar
  30. [30]
    A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    M. Alishahiha, A. Davody and A. Vahedi, On AdS/CFT of Galilean Conformal Field Theories, JHEP 08 (2009) 022 [arXiv:0903.3953] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    A. Bagchi and I. Mandal, On Representations and Correlation Functions of Galilean Conformal Algebras, Phys. Lett. B 675 (2009) 393 [arXiv:0903.4524] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    M. Henkel, Schrödinger invariance in strongly anisotropic critical systems, J. Stat. Phys. 75 (1994) 1023 [hep-th/9310081] [SPIRES].MATHCrossRefADSGoogle Scholar
  34. [34]
    M. Henkel and J. Unterberger, Schrödinger invariance and space-time symmetries, Nucl. Phys. B 660 (2003) 407 [hep-th/0302187] [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    M. Alishahiha, R. Fareghbal, A.E. Mosaffa and S. Rouhani, Asymptotic symmetry of geometries with Schrödinger isometry, arXiv:0902.3916 [SPIRES].
  36. [36]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  37. [37]
    J.M. Lévy-Leblond, Galilei Group and Galilean Invariance, in Group Theory and Its Applications, Vol.2, E. Loebl eds., Academic Press, New York U.S.A. (1971) pg. 221.Google Scholar
  38. [38]
    D.R. Grigore, The Projective unitary irreducible representations of the Galilei group in (1 + 2)-dimensions, J. Math. Phys. 37 (1996) 460 [hep-th/9312048] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  39. [39]
    S.K. Bose, The Galilean group in (2 + 1) space-times and its central extension, Commun. Math. Phys. 169 (1995) 385 [SPIRES].MATHCrossRefADSGoogle Scholar
  40. [40]
    J. Lukierski, P.C. Stichel and W.J. Zakrzewski, Galilean-invariant (2 + 1)-dimensional models with a Chern-Simons-like term and D = 2 noncommutative geometry, Annals Phys. 260 (1997) 224 [hep-th/9612017] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  41. [41]
    M.A. del Olmo and M.S. Plyushchay, Electric Chern-Simons term, enlarged exotic Galilei symmetry and noncommutative plane, Annals Phys. 321 (2006) 2830 [hep-th/0508020] [SPIRES].MATHCrossRefADSGoogle Scholar
  42. [42]
    J.-M. Lévy-Leblond, Nonrelativistic Particles and Wave Equations, Comm. Math. Phys. 6 (1967) 286.MATHCrossRefMathSciNetADSGoogle Scholar
  43. [43]
    Y. Nakayama, Index for Non-relativistic Superconformal Field Theories, JHEP 10 (2008) 083 [arXiv:0807.3344] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    K.-M. Lee, S. Lee and S. Lee, Nonrelativistic Superconformal M2-Brane Theory, JHEP 09 (2009) 030 [arXiv:0902.3857] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    A. Volovich and C. Wen, Correlation Functions in Non-Relativistic Holography, JHEP 05 (2009) 087 [arXiv:0903.2455] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    C.A. Fuertes and S. Moroz, Correlation functions in the non-relativistic AdS/CFT correspondence, Phys. Rev. D 79 (2009) 106004 [arXiv:0903.1844] [SPIRES].ADSGoogle Scholar
  47. [47]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  48. [48]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  49. [49]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} = 6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of PhysicsSwansea UniversitySwanseaU.K.
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations