On the geometry of C3/∆27 and del Pezzo surfaces

  • Sergio L. Cacciatori
  • Marco Compagnoni


We clarify some aspects of the geometry of a resolution of the orbifold \( X = {{{\mathbb{C}^3}} \mathord{\left/{\vphantom {{{\mathbb{C}^3}} {{\Delta_{27}}}}} \right.} {{\Delta_{27}}}} \), the noncompact complex manifold underlying the brane quiver standard model recently proposed by Verlinde and Wijnholt. We explicitly realize a map between X and the total space of the canonical bundle over a degree 1 quasi del Pezzo surface, thus defining a desingularization of X. Our analysis relys essentially on the relationship existing between the normalizer group of ∆27 and the Hessian group and on the study of the behaviour of the Hesse pencil of plane cubic curves under the quotient.


Brane Dynamics in Gauge Theories Differential and Algebraic Geometry Intersecting branes models Superstring Vacua 


  1. [1]
    D. Allcock, J.A. Carlson and D. Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Alg. Geom. 11 (2002) 659.MATHMathSciNetGoogle Scholar
  2. [2]
    M. Artebani and I. Dolgachev, The Hesse pencil of plane cubic curves, math.AG/0611590.
  3. [3]
    P.S. Aspinwall, D-branes on Calabi-Yau manifolds, hep-th/0403166 [SPIRES].
  4. [4]
    D. Auroux, L. Katzarkov and D. Orlov, Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves, Invent. Math. 166 (2006) 537.MATHCrossRefMathSciNetADSGoogle Scholar
  5. [5]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    D. Berenstein, V. Jejjala and R.G. Leigh, The standard model on a D-brane, Phys. Rev. Lett. 88 (2002) 071602 [hep-ph/0105042] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    V. Bouchard and R. Cavalieri, On the mathematics and physics of high genus invariants of [C 3/Z 3], arXiv:0709.3805 [SPIRES].
  9. [9]
    M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    B.A. Burrington, J.T. Liu and L.A.P. Zayas, Finite Heisenberg groups from nonabelian orbifold quiver gauge theories, Nucl. Phys. B 794 (2008) 324 [hep-th/0701028] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    S.L. Cacciatori and M. Compagnoni, D-Branes on C 63 part I: prepotential and GW-invariants, arXiv:0806.2372 [SPIRES].
  12. [12]
    A. Canonaco, Exceptional sequences and derived autoequivalences, arXiv:0801.0173.
  13. [13]
    F.R. Cossec and I.V. Dolgachev, Enriques surfaces. I, Progress in Mathematics volume 76, Birkhäuser Boston Inc., Boston, U.S.A. (1989).MATHGoogle Scholar
  14. [14]
    G. Cliff, D. McNeillya and F. Szechtman, Character fields and Schur indices of irreducible Weil characters, J. Group Theor. 7 (2004) 39.MATHCrossRefGoogle Scholar
  15. [15]
    A. Craw and M. Reid, How to calculate A-Hilb \( {\mathbb{C}^3} \), in Geometry of toric varieties, Sémin. Congr. volume 6, Soc. Math. France, Paris France (2002), pag. 129 [math.AG/9909085].Google Scholar
  16. [16]
    O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    D.-E. Diaconescu and J. Gomis, Fractional branes and boundary states in orbifold theories, JHEP 10 (2000) 001 [hep-th/9906242] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    I. Dolgachev, B. van Geemen and S. Kondō, A complex ball uniformization on the moduli space of cubic surfaces via periods of K3 surfaces, J. Reine Angew. Math. 588 (2005) 99.MATHMathSciNetGoogle Scholar
  19. [19]
    R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [SPIRES].
  20. [20]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [SPIRES].
  21. [21]
    M.R. Douglas, D-branes, categories and N = 1 supersymmetry, J. Math. Phys. 42 (2001) 2818 [hep-th/0011017] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  22. [22]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [SPIRES].
  23. [23]
    W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies volume 131, Princeton University Press, Princeton U.S.A. (1993).MATHGoogle Scholar
  24. [24]
    P. Gérardin, Three Weil representations associate to finite fields, Bull. Am. Math. Soc. 82 (1976) 268.MATHCrossRefGoogle Scholar
  25. [25]
    P. Gérardin, Weil representations associated to finite fields, J. Alg. Geom. 46 (1977) 54.MATHGoogle Scholar
  26. [26]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics volume 52, Springer, U.S.A. (1977)MATHGoogle Scholar
  28. [28]
    O. Hesse, Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln, J. Reine Angew. Math. 10 (1844) 68.Google Scholar
  29. [29]
    O. Hesse, Über die Wendepunkte der Curven dritter Ordnun, J. Reine Angew. Math. 28 (1844) 97.MATHGoogle Scholar
  30. [30]
    S. Hosono, Central charges, symplectic forms and hypergeometric series in local mirror symmetry, hep-th/0404043 [SPIRES].
  31. [31]
    C. Jordan, Mémoire sur les equations différentielles linéaires intégrale algébrique, J. Reine Angew. Math. 84 (1878) 89.Google Scholar
  32. [32]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    R.L. Karp, On the C n/Z m fractional branes, J. Math. Phys. 50 (2009) 022304 [hep-th/0602165] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    B.V. Karpov, D. Yu. Nogin, Three-block exceptional sets on del Pezzo surfaces (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998) 3 [Izv. Math. 62 (1998) 429].MathSciNetGoogle Scholar
  35. [35]
    G. Ligozat, Courbes modulaires de genre 1, Bull. Soc. Math. France Mém. volume 43, supplément au Bull. Soc. Math. France Tome 103, Paris France (1975).Google Scholar
  36. [36]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  37. [37]
    D. Malyshev, Del Pezzo singularities and SUSY breaking, arXiv:0705.3281 [SPIRES].
  38. [38]
    D. Malyshev and H. Verlinde, D-branes at singularities and string phenomenology, Nucl. Phys. Proc. Suppl. 171 (2007) 139 [arXiv:0711.2451] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    H. Maschke, Aufstellung des vollen formensystems einer quaternaren Gruppe von 51840 linearen substitutionen, Math. Ann. 33 (1889) 317.CrossRefMathSciNetGoogle Scholar
  40. [40]
    D.R. Morrison and M.R. Plesser, Non-spherical horizons. I, Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [SPIRES].MATHMathSciNetGoogle Scholar
  41. [41]
    T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer, U.S.A. (1988).MATHGoogle Scholar
  42. [42]
    J. Polchinski, String theory, Cambridge University Press, Cambridge U.K. (1998), pag. 531.CrossRefGoogle Scholar
  43. [43]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    H.C. Shaub and H.E. Schoonmaker, The Hessian configuration and its relation to the group of order 216, Am. Math. J. 38 (1931) 388.CrossRefMathSciNetGoogle Scholar
  45. [45]
    H. Verlinde and M. Wijnholt, Building the standard model on a D3-brane, JHEP 01 (2007) 106 [hep-th/0508089] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964) 143.MATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    H. Yoshida, Weil’s representations of the symplectic groups over finite fields, J. Math. Soc. Jap. 31 (1979) 399.MATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità degli Studi dell’Insubria22100ComoItaly
  2. 2.Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly

Personalised recommendations