Holographic metastability

  • Steven Abel
  • Felix Brümmer


We show how supersymmetric QCD in a slice of AdS can naturally acquire metastable vacua. The formulation closely follows that of Intriligator, Seiberg and Shih (ISS), with an “electric” sector on the UV brane and a “magnetic” sector on the IR brane. However the ’t Hooft anomaly matching that constrains the Seiberg duality central to ISS is replaced by anomaly inflow and cancellation, and the source of strong coupling is the CFT to which the theory couples rather than the gauge groups. The theory contains an anomaly free R-symmetry that, when broken by UV effects, leads to an O’Raifeartaigh model on the IR brane. In contrast to ISS, the R-symmetry breaking in the UV can be maximal, and yet the R-symmetry breaking in the IR theory remains under strict control: there is no need for retrofitting of small parameters.


Supersymmetry Breaking Supersymmetric gauge theory Field Theories in Higher Dimensions 


  1. [1]
    E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    I. Affleck, M. Dine and N. Seiberg, Supersymmetry Breaking by Instantons, Phys. Rev. Lett. 51 (1983) 1026 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Supersymmetric QCD, Nucl. Phys. B 241 (1984) 493 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Four-Dimensions and Its Phenomenological Implications, Nucl. Phys. B 256 (1985) 557 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl. 45BC (1996) 1 [hep-th/9509066] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    J.R. Ellis, C.H. Llewellyn Smith and G.G. Ross, Will the universe become supersymmetric?, Phys. Lett. B 114 (1982) 227 [SPIRES].ADSGoogle Scholar
  9. [9]
    M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [SPIRES].ADSGoogle Scholar
  10. [10]
    S. Dimopoulos, G.R. Dvali, R. Rattazzi and G.F. Giudice, Dynamical soft terms with unbroken supersymmetry, Nucl. Phys. B 510 (1998) 12 [hep-ph/9705307] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    M.A. Luty and J. Terning, Improved single sector supersymmetry breaking, Phys. Rev. D 62 (2000) 075006 [hep-ph/9812290] [SPIRES].ADSGoogle Scholar
  12. [12]
    T. Banks, Cosmological supersymmetry breaking and the power of the pentagon: A model of low energy particle physics, hep-ph/0510159 [SPIRES].
  13. [13]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  14. [14]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  16. [16]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/Flux Annihilation and the String Dual of a Non- Supersymmetric Field Theory, JHEP 06 (2002) 021 [hep-th/0112197] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl. Phys. B 416 (1994) 46 [hep-ph/9309299] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    E. Dudas, J. Mourad and F. Nitti, Metastable Vacua in Brane Worlds, JHEP 08 (2007) 057 [arXiv:0706.1269] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    H. Abe, T. Kobayashi and Y. Omura, Metastable supersymmetry breaking vacua from conformal dynamics, Phys. Rev. D 77 (2008) 065001 [arXiv:0712.2519] [SPIRES].ADSGoogle Scholar
  20. [20]
    M. Dine, J.L. Feng and E. Silverstein, Retrofitting O’Raifeartaigh models with dynamical scales, Phys. Rev. D 74 (2006) 095012 [hep-th/0608159] [SPIRES].ADSGoogle Scholar
  21. [21]
    M. Dine and J. Mason, Gauge mediation in metastable vacua, Phys. Rev. D 77 (2008) 016005 [hep-ph/0611312] [SPIRES].ADSGoogle Scholar
  22. [22]
    S.A. Abel, C. Durnford, J. Jaeckel and V.V. Khoze, Patterns of Gauge Mediation in Metastable SUSY Breaking, JHEP 02 (2008) 074 [arXiv:0712.1812] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    H. Murayama and Y. Nomura, Gauge mediation simplified, Phys. Rev. Lett. 98 (2007) 151803 [hep-ph/0612186] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    O. Aharony and N. Seiberg, Naturalized and simplified gauge mediation, JHEP 02 (2007) 054 [hep-ph/0612308] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    F. Brümmer, A natural renormalizable model of metastable SUSY breaking, JHEP 07 (2007) 043 [arXiv:0705.2153] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  27. [27]
    D. Marti and A. Pomarol, Supersymmetric theories with compact extra dimensions in N = 1 superfields, Phys. Rev. D 64 (2001) 105025 [hep-th/0106256] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    T. Gherghetta, Warped models and holography, hep-ph/0601213 [SPIRES].
  30. [30]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Anomalies on orbifolds, Phys. Lett. B 516 (2001) 395 [hep-th/0103135] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    C.A. Scrucca, M. Serone, L. Silvestrini and F. Zwirner, Anomalies in orbifold field theories, Phys. Lett. B 525 (2002) 169 [hep-th/0110073] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    R. Barbieri, R. Contino, P. Creminelli, R. Rattazzi and C.A. Scrucca, Anomalies, Fayet-Iliopoulos terms and the consistency of orbifold field theories, Phys. Rev. D 66 (2002) 024025 [hep-th/0203039] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    S. Groot Nibbelink, H.P. Nilles and M. Olechowski, Instabilities of bulk fields and anomalies on orbifolds, Nucl. Phys. B 640 (2002) 171 [hep-th/0205012] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.

Personalised recommendations