Bosonic spectral action induced from anomaly cancellation



We show how (a slight modification of) the noncommutative geometry bosonic spectral action can be obtained by the cancellation of the scale anomaly of the fermionic action. In this sense the standard model coupled with gravity is induced by the quantum nature of the fermions. The regularization used is very natural in noncommutative geometry and puts the bosonic and fermionic action on a similar footing.


Non-Commutative Geometry Conformal and W Symmetry Anomalies in Field and String Theories 


  1. [1]
    A. Connes, Noncommutative Geometry, Academic Press (1984).Google Scholar
  2. [2]
    A. Connes and M. Marcolli, Noncommutative Geometry from Quantum Fields to Motives, AMS Colloquium Publications 55 (2007).Google Scholar
  3. [3]
    G. Landi, An introduction to noncommutative spaces and their geometry, hep-th/9701078 [SPIRES].
  4. [4]
    J.M. Gracia-Bondia, J.C. Varilly and H. Figueroa, Elements of Noncommutative Geometry, Birkhauser (2000).Google Scholar
  5. [5]
    J. Madore, An introduction to noncommutative differential geometry and itsphysical applications, Lond. Math. Soc. Lect. Note Ser. 257 (2000) 1 [SPIRES].Google Scholar
  6. [6]
    C. Bär, Dependence on the spin structure of the Dirac spectrum, Seminaires et Congres 4, Global Analysis and Harmonic Analysis, J.P. Bourguignon, T. Branson, O. Hijazi (Eds.) (2000).Google Scholar
  7. [7]
    A. Connes, A unitary invariant in Riemannian geometry, Int. J. Geom. Meth. Mod. Phys. 5 (2008) 1215 [arXiv:0810.2091] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    A.A. Andrianov, L. Bonora and R. Gamboa-Saravi, Regularized functional integral for fermions and anomalies, Phys. Rev. D 26 (1982) 2821 [SPIRES].ADSGoogle Scholar
  9. [9]
    A.A. Andrianov and L. Bonora, Finite - Mode Regularization of the Fermion Functional Integral, Nucl. Phys. B 233 (1984) 232 [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    A.A. Andrianov and L. Bonora, Finite mode regularization of the fermion functional integral. 2, Nucl. Phys. B 233 (1984) 247 [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    A. D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040 [Dokl. Akad. Nauk Ser. Fiz. 177 (1967) 70] [Sov. Phys. Usp. 34 (1991) 394] [Gen. Rel. Grav. 32 (2000) 365].ADSGoogle Scholar
  12. [12]
    M. Visser, Sakharov’s induced gravity: A modern perspective, Mod. Phys. Lett. A 17 (2002) 977 [gr-qc/0204062] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    Y.V. Novozhilov and D.V. Vassilevich, Induced quantum conformal gravity, Phys. Lett. B 220 (1989) 36 [SPIRES].ADSGoogle Scholar
  14. [14]
    A. Connes and J. Lott, Particle models and noncommutative geometry (expanded version), Nucl. Phys. Proc. Suppl. 18B (1991) 29 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    A. Connes, Noncommutative geometry and reality, J. Math. Phys. 36 (1995) 6194 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  16. [16]
    A.H. Chamseddine and A. Connes, The spectral action principle, Commun. Math. Phys. 186 (1997) 731 [hep-th/9606001] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  17. [17]
    A.H. Chamseddine, A. Connes and M. Marcolli, Gravity and the standard model with neutrino mixing, Adv. Theor. Math. Phys. 11 (2007) 991 [hep-th/0610241] [SPIRES].MATHMathSciNetGoogle Scholar
  18. [18]
    F. Lizzi, G. Mangano, G. Miele and G. Sparano, Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories, Phys. Rev. D 55 (1997) 6357 [hep-th/9610035] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    J.M. Gracia-Bondia, B. Iochum and T. Schucker, The standard model in noncommutative geometry and fermion doubling, Phys. Lett. B 416 (1998) 123 [hep-th/9709145] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    P. Gilkey, Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, Publish or Perish (1984).Google Scholar
  21. [21]
    A.H. Chamseddine and A. Connes, Scale invariance in the spectral action, J. Math. Phys. 47 (2006) 063504 [hep-th/0512169] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    D.V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  23. [23]
    W. Nelson and M. Sakellariadou, Cosmology and the Noncommutative approach to the Standard Model, Phys. Rev. D 81 (2010) 085038 [arXiv:0812.1657] [SPIRES].ADSGoogle Scholar
  24. [24]
    M. Marcolli and E. Pierpaoli, Early Universe models from Noncommutative Geometry, arXiv:0908.3683 [SPIRES].
  25. [25]
    R.A. Bertlmann Anomalies in Quantum Field Theory, Oxford University Press, Oxforx U.K. (2000)CrossRefGoogle Scholar
  26. [26]
    K. Fujikawa and H. Suzuki, Path Integrals And Quantum Anomalies, Oxford University Press, Oxforx U.K. (2004).MATHCrossRefGoogle Scholar
  27. [27]
    M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387 [hep-th/9308075] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  28. [28]
    M. Wodzicki, Non-commutative Residue Chapter I, in Lecture Notes in Mathematics, vol. 1289, Yu.I. Manin ed., Springer-Verlag, Berlin Germany (1987) pg. 320.Google Scholar
  29. [29]
    K. Fujikawa, Comment on Chiral and Conformal Anomalies, Phys. Rev. Lett. 44 (1980) 1733 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    A.A. Andrianov, V.A. Andrianov, V.Y. Novozhilov and Y.V. Novozhilov, Joint chiral and conformal bosonization in QCD and the linear σ-model, Phys. Lett. B 186 (1987) 401 [SPIRES].ADSGoogle Scholar
  31. [31]
    F. Lizzi, G. Mangano, G. Miele and G. Sparano, Inflationary cosmology from noncommutative geometry, Int. J. Mod. Phys. A 11 (1996) 2907 [gr-qc/9503040] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    F. Lizzi, G. Mangano and G. Miele, Another alternative to compactification: Noncommutative geometry and Randall-Sundrum models, Mod. Phys. Lett. A 16 (2001) 1 [hep-th/0009180] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    A.H. Chamseddine, Noncommutative gravity, Annales Henri Poincaré 4S2 (2003) S881 [hep-th/0301112] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.High Energy Physics Group, Dept. Estructura i Constituents de la MatèriaUniversitat de BarcelonaBarcelona, CataloniaSpain
  2. 2.Institut de Ciències del Cosmos, UBBarcelonaSpain
  3. 3.V.A. Fock Department of Theoretical PhysicsSankt-Petersburg State UniversitySt. PetersburgRussia
  4. 4.Dipartimento di Scienze FisicheUniversità di Napoli Federico II and INFN, Sezione di NapoliNapoliItaly

Personalised recommendations