A phenomenological study of 5d supersymmetry

  • Gautam Bhattacharyya
  • Tirtha Sankar Ray


Supersymmetry and extra dimension need not be mutually exclusive options of physics for the TeV scale and beyond. Intrinsically higher dimensional top-down scenarios, e.g. string models, often contain supersymmetry at the weak scale. In this paper, we envisage a more phenomenological scenario by embedding the 4d constrained minimal supersymmetric standard model in a flat 5d S 1/Z 2 orbifold, with the inverse radius of compactification at the TeV scale. The gauge and Higgs supermultiplets are placed in the bulk. We assume that only the third generation matter multiplet accesses the bulk, while the first two generations are confined to a brane on an orbifold fixed point. From a 4d perspective, the bulk has N = 2 supersymmetry which entails a special non-renormalization theorem giving rise to a significant numerical impact on the renormalization group running of various parameters. The brane supersymmetry corresponds to N = 1 which we assume to be broken in an unspecified but phenomenologically acceptable way. Given this setup, we study how the gauge and Yukawa couplings and the N = 1 brane supersymmetry breaking soft masses run through the energy scale exciting the Kaluza-Klein states at regular interval. In the process, we ensure that electroweak symmetry does break radiatively. We confront our low energy parameters with the experimental measurements or limits of different observables, e.g. LEP lower limits on the lightest Higgs boson and the chargino, the (g −2) of muon, the branching ratio of bsγ, and the WMAP probe of relative dark matter abundance. We present our results by showing the allowed/disallowed zone in the plane of the common scalar mass (m 0) and common gaugino mass (M 1/2) for both positive and negative μ parameter. Our plots are the first 5d versions of the often displayed 4d m 0M 1/2 plots, and we provide reasons behind the differences between the 4d and 5d plots.


Supersymmetry Phenomenology 


  1. [1]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].ADSGoogle Scholar
  2. [2]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].ADSGoogle Scholar
  3. [3]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [SPIRES].ADSGoogle Scholar
  4. [4]
    I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].ADSGoogle Scholar
  6. [6]
    P. Nath and M. Yamaguchi, Effects of Kaluza-Klein excitations on g μ − 2, Phys. Rev. D 60 (1999) 116006 [hep-ph/9903298] [SPIRES].ADSGoogle Scholar
  7. [7]
    D. Chakraverty, K. Huitu and A. Kundu, Effects of universal extra dimensions on \( B^{0} - \bar{B}^{0} \) mixing, Phys. Lett. B 558 (2003) 173 [hep-ph/0212047] [SPIRES].ADSGoogle Scholar
  8. [8]
    A.J. Buras, M. Spranger and A. Weiler, The impact of universal extra dimensions on the unitarity triangle and rare K and B decays, Nucl. Phys. B 660 (2003) 225 [hep-ph/0212143] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    A.J. Buras, A. Poschenrieder, M. Spranger and A. Weiler, The impact of universal extra dimensions on BX/sγ, BX/s gluon, BX/sμ+μ , K L → π0 e + e and ϵ’/ϵ, Nucl. Phys. B 678 (2004) 455 [hep-ph/0306158] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    K. Agashe, N.G. Deshpande and G.H. Wu, Universal extra dimensions and bsγ, Phys. Lett. B 514 (2001) 309 [hep-ph/0105084] [SPIRES].ADSGoogle Scholar
  11. [11]
    J.F. Oliver, J. Papavassiliou and A. Santamaria, Universal extra dimensions and \( Z \rightarrow b\bar{b} \), Phys. Rev. D 67 (2003) 056002 [hep-ph/0212391] [SPIRES].ADSGoogle Scholar
  12. [12]
    T. Appelquist and H.-U. Yee, Universal extra dimensions and the Higgs boson mass, Phys. Rev. D 67 (2003) 055002 [hep-ph/0211023] [SPIRES].ADSGoogle Scholar
  13. [13]
    I. Antoniadis, K. Benakli and M. Quirós, Production of Kaluza-Klein states at future colliders, Phys. Lett. B 331 (1994) 313 [hep-ph/9403290] [SPIRES].ADSGoogle Scholar
  14. [14]
    T.G. Rizzo, Probes of universal extra dimensions at colliders, Phys. Rev. D 64 (2001) 095010 [hep-ph/0106336] [SPIRES].ADSGoogle Scholar
  15. [15]
    C. Macesanu, C.D. McMullen and S. Nandi, Collider implications of universal extra dimensions, Phys. Rev. D 66 (2002) 015009 [hep-ph/0201300] [SPIRES].ADSGoogle Scholar
  16. [16]
    C. Macesanu, C.D. McMullen and S. Nandi, New signal for universal extra dimensions, Phys. Lett. B 546 (2002) 253 [hep-ph/0207269] [SPIRES].ADSGoogle Scholar
  17. [17]
    H.-C. Cheng, Universal extra dimensions at the e e colliders, Int. J. Mod. Phys. A 18 (2003) 2779 [hep-ph/0206035] [SPIRES].ADSGoogle Scholar
  18. [18]
    U. Haisch and A. Weiler, Bound on minimal universal extra dimensions from \( \bar{B} \rightarrow X/s \gamma \), Phys. Rev. D 76 (2007) 034014 [hep-ph/0703064] [SPIRES].ADSGoogle Scholar
  19. [19]
    G. Bhattacharyya, A. Datta, S.K. Majee and A. Raychaudhuri, Exploring the universal extra dimension at the LHC, Nucl. Phys. B 821 (2009) 48 [arXiv:0904.0937] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    D. Choudhury, A. Datta and K. Ghosh, Deciphering universal extra dimension from the top quark signals at the CERN LHC, arXiv:0911.4064 [SPIRES].
  21. [21]
    E. Accomando, I. Antoniadis and K. Benakli, Looking for TeV-scale strings and extra-dimensions, Nucl. Phys. B 579 (2000) 3 [hep-ph/9912287] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    A. Muck, A. Pilaftsis and R. Ruckl, Probing minimal 5D extensions of the standard model: From LEP to an e + e linear collider, Nucl. Phys. B 687 (2004) 55 [hep-ph/0312186] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    P. Nath, Y. Yamada and M. Yamaguchi, Probing the nature of compactification with Kaluza-Klein excitations at the Large Hadron Collider, Phys. Lett. B 466 (1999) 100 [hep-ph/9905415] [SPIRES].ADSGoogle Scholar
  24. [24]
    M. Masip and A. Pomarol, Effects of SM Kaluza-Klein excitations on electroweak observables, Phys. Rev. D 60 (1999) 096005 [hep-ph/9902467] [SPIRES].ADSGoogle Scholar
  25. [25]
    T.G. Rizzo and J.D. Wells, Electroweak precision measurements and collider probes of the Standard Model with large extra dimensions, Phys. Rev. D 61 (2000) 016007 [hep-ph/9906234] [SPIRES].ADSGoogle Scholar
  26. [26]
    A. Strumia, Bounds on Kaluza-Klein excitations of the SM vector bosons from electroweak tests, Phys. Lett. B 466 (1999) 107 [hep-ph/9906266] [SPIRES].ADSGoogle Scholar
  27. [27]
    C.D. Carone, Electroweak constraints on extended models with extra dimensions, Phys. Rev. D 61 (2000) 015008 [hep-ph/9907362] [SPIRES].ADSGoogle Scholar
  28. [28]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    F. Burnell and G.D. Kribs, The abundance of Kaluza-Klein dark matter with coannihilation, Phys. Rev. D 73 (2006) 015001 [hep-ph/0509118] [SPIRES].ADSGoogle Scholar
  30. [30]
    D. Hooper and G.D. Kribs, Kaluza-Klein dark matter and the positron excess, Phys. Rev. D 70 (2004) 115004 [hep-ph/0406026] [SPIRES].ADSGoogle Scholar
  31. [31]
    F. Fucito, A. Lionetto and M. Prisco, Extra-dimensions and dark matter, JCAP 06 (2006) 002 [hep-ph/0603042] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    N. Arkani-Hamed, H.-C. Cheng, B.A. Dobrescu and L.J. Hall, Self-breaking of the standard model gauge symmetry, Phys. Rev. D 62 (2000) 096006 [hep-ph/0006238] [SPIRES].ADSGoogle Scholar
  33. [33]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [SPIRES].ADSGoogle Scholar
  34. [34]
    A. Delgado, A. Pomarol and M. Quirós, Electroweak and flavor physics in extensions of the standard model with large extra dimensions, JHEP 01 (2000) 030 [hep-ph/9911252] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    K.R. Dienes, E. Dudas and T. Gherghetta, Grand unification at intermediate mass scales through extra dimensions, Nucl. Phys. B 537 (1999) 47 [hep-ph/9806292] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    K.R. Dienes, E. Dudas and T. Gherghetta, Extra spacetime dimensions and unification, Phys. Lett. B 436 (1998) 55 [hep-ph/9803466] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    G. Bhattacharyya, A. Datta, S.K. Majee and A. Raychaudhuri, Power law blitzkrieg in universal extra dimension scenario, Nucl. Phys. B 760 (2007) 117 [hep-ph/0608208] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    A. Hebecker and A. Westphal, Power-like threshold corrections to gauge unification in extra dimensions, Annals Phys. 305 (2003) 119 [hep-ph/0212175] [SPIRES].MATHADSGoogle Scholar
  39. [39]
    G. Bhattacharyya, S. Goswami and A. Raychaudhuri, Power law enhancement of neutrino mixing angles in extra dimensions, Phys. Rev. D 66 (2002) 033008 [hep-ph/0202147] [SPIRES].ADSGoogle Scholar
  40. [40]
    A. Deandrea, J. Welzel, P. Hosteins and M. Oertel, Quantum corrections to the effective neutrino mass operator in 5D MSSM, Phys. Rev. D 75 (2007) 113005 [hep-ph/0611172] [SPIRES].ADSGoogle Scholar
  41. [41]
    B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the electroweak scale and stabilizing moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    B.S. Acharya, K. Bobkov, G. Kane, P. Kumar and D. Vaman, An M-theory solution to the hierarchy problem, Phys. Rev. Lett. 97 (2006) 191601 [hep-th/0606262] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    J.J. Heckman, C. Vafa, H. Verlinde and M. Wijnholt, Cascading to the MSSM, JHEP 06 (2008) 016 [arXiv:0711.0387] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    I. Antoniadis and S. Dimopoulos, Splitting supersymmetry in string theory, Nucl. Phys. B 715 (2005) 120 [hep-th/0411032] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY breaking in local string/F-theory models, JHEP 09 (2009) 007 [arXiv:0906.3297] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    T. Banks and M. Dine, Couplings and scales in strongly coupled heterotic string theory, Nucl. Phys. B 479 (1996) 173 [hep-th/9605136] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    R. Sundrum, SUSY splits, but then returns, arXiv:0909.5430 [SPIRES].
  48. [48]
    T. Gherghetta and A. Pomarol, The standard model partly supersymmetric, Phys. Rev. D 67 (2003) 085018 [hep-ph/0302001] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    G. Bhattacharyya, S.K. Majee and A. Raychaudhuri, Extra-dimensional relaxation of the upper limit of the lightest supersymmetric neutral Higgs mass, Nucl. Phys. B 793 (2008) 114 [arXiv:0705.3103] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    I. Antoniadis, C. Muñoz and M. Quirós, Dynamical supersymmetry breaking with a large internal dimension, Nucl. Phys. B 397 (1993) 515 [hep-ph/9211309] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    K. Benakli, Perturbative supersymmetry breaking in orbifolds with Wilson line backgrounds, Phys. Lett. B 386 (1996) 106 [hep-th/9509115] [SPIRES].MathSciNetADSGoogle Scholar
  52. [52]
    I. Antoniadis, S. Dimopoulos and G.R. Dvali, Millimeter range forces in superstring theories with weak- scale compactification, Nucl. Phys. B 516 (1998) 70 [hep-ph/9710204] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    R. Barbieri, S. Ferrara, L. Maiani, F. Palumbo and C.A. Savoy, Quartic mass matrix and renormalization constants in supersymmetric Yang-Mills theories, Phys. Lett. B 115 (1982) 212 [SPIRES].ADSGoogle Scholar
  54. [54]
    J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    J. Scherk and J.H. Schwarz, Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett. B 82 (1979) 60 [SPIRES].ADSGoogle Scholar
  56. [56]
    A. Pomarol and M. Quirós, The standard model from extra dimensions, Phys. Lett. B 438 (1998) 255 [hep-ph/9806263] [SPIRES].ADSGoogle Scholar
  57. [57]
    A. Delgado, A. Pomarol and M. Quirós, Supersymmetry and electroweak breaking from extra dimensions at the TeV-scale, Phys. Rev. D 60 (1999) 095008 [hep-ph/9812489] [SPIRES].ADSGoogle Scholar
  58. [58]
    I. Antoniadis, S. Dimopoulos, A. Pomarol and M. Quirós, Soft masses in theories with supersymmetry breaking by TeV-compactification, Nucl. Phys. B 544 (1999) 503 [hep-ph/9810410] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    D. Diego, G. von Gersdorff and M. Quirós, The MSSM from Scherk-Schwarz supersymmetry breaking, Phys. Rev. D 74 (2006) 055004 [hep-ph/0605024] [SPIRES].ADSGoogle Scholar
  60. [60]
    G. von Gersdorff, The MSSM on the interval, Mod. Phys. Lett. A 22 (2007) 385 [hep-ph/0701256] [SPIRES].ADSGoogle Scholar
  61. [61]
    R. Barbieri, L.J. Hall and Y. Nomura, A constrained standard model from a compact extra dimension, Phys. Rev. D 63 (2001) 105007 [hep-ph/0011311] [SPIRES].ADSGoogle Scholar
  62. [62]
    E.A. Mirabelli and M.E. Peskin, Transmission of supersymmetry breaking from a 4-dimensional boundary, Phys. Rev. D 58 (1998) 065002 [hep-th/9712214] [SPIRES].MathSciNetADSGoogle Scholar
  63. [63]
    D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293] [SPIRES].ADSGoogle Scholar
  64. [64]
    Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  66. [66]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].
  67. [67]
    N. Arkani-Hamed, L.J. Hall, Y. Nomura, D. Tucker-Smith and N. Weiner, Finite radiative electroweak symmetry breaking from the bulk, Nucl. Phys. B 605 (2001) 81 [hep-ph/0102090] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    T. Kobayashi, J. Kubo, M. Mondragon and G. Zoupanos, Running of soft parameters in extra space-time dimensions, Nucl. Phys. B 550 (1999) 99 [hep-ph/9812221] [SPIRES].CrossRefADSGoogle Scholar
  69. [69]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: a program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [SPIRES].CrossRefADSGoogle Scholar
  71. [71]
    P. Dey and G. Bhattacharyya, A comparison of ultraviolet sensitivities in universal, nonuniversal and split extra dimensional models, Phys. Rev. D 70 (2004) 116012 [hep-ph/0407314] [SPIRES].ADSGoogle Scholar
  72. [72]
    P. Dey and G. Bhattacharyya, Ultraviolet sensitivity of rare decays in nonuniversal extra dimensional models, Phys. Rev. D 69 (2004) 076009 [hep-ph/0309110] [SPIRES].ADSGoogle Scholar
  73. [73]
    A. Djouadi, M. Drees and J.-L. Kneur, Updated constraints on the minimal supergravity model, JHEP 03 (2006) 033 [hep-ph/0602001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  74. [74]
    WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [SPIRES].
  76. [76]
    R.M. Carey et al., The new (g-2) experiment: a proposal to measure the muon anomalous magnetic moment to ±0.14 ppm precision, FERMILAB-PROPOSAL-0989 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations