Skip to main content
Log in

Azimuthal correlation among jets produced in association with a bottom or top quark pair at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Angular correlation of jets produced in association with a massive scalar, vector or tensor boson is crucial in the determination of their spin and CP properties. We study jet angular correlations in events with a high mass bottom quark pair or a top quark pair and two jets at the LHC, whose cross-section is dominated by the virtual gluon fusion sub-processes when appropriate kinematic selection cuts (vector-boson fusion cuts) are applied. We evaluate helicity amplitudes for sub-processes initiated by qq, qg and gg collisions in the limit where the intermediate gluons are collinear to the initial partons. We first obtain a general expression for the azimuthal angle correlations among the dijets and \( t\overline{t} \) or \( b\overline{b} \), in terms of the gg\( t\overline{t} \) or \( b\overline{b} \) helicity amplitudes in the real gluon approximation of the full matrix elements, and find simple analytic expressions in the two kinematic limits, the production of a heavy quark pair near the threshold, and in the relativistic limit where the invariant mass of the heavy quark pair is much larger than the quark mass. For \( b\overline{b} \) + 2 jets we find strong azimuthal angle correlations which are distinct from those expected for events with a CP-even or odd scalar boson which may decay into a \( b\overline{b} \) pair. For \( t\overline{t} \) + 2 jets we find that the angular correlations are similar to that of a CP-odd scalar+2 jets near the threshold \( {M_{{t\overline{t}}}}\sim 2{m_t} \), while in the relativistic limit they resemble the distribution for \( b\overline{b} \) + 2 jets. These correlations in the standard QCD processes will help establish the experimental technique to measure the spin and CP properties of new particles produced via gluon fusion at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].

    Article  ADS  Google Scholar 

  2. V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Higgs + 2 jets via gluon fusion, Phys. Rev. Lett. 87 (2001) 122001 [hep-ph/0105129] [INSPIRE].

    Article  ADS  Google Scholar 

  3. V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon fusion contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030] [INSPIRE].

    Article  ADS  Google Scholar 

  4. V. Hankele, G. Klamke and D. Zeppenfeld, Higgs + 2 jets as a probe for CP properties, hep-ph/0605117 [INSPIRE].

  5. K. Odagiri, On azimuthal spin correlations in Higgs plus jet events at LHC, JHEP 03 (2003) 009 [hep-ph/0212215] [INSPIRE].

    Article  ADS  Google Scholar 

  6. V. Del Duca et al., Monte Carlo studies of the jet activity in Higgs + 2 jet events, JHEP 10 (2006) 016 [hep-ph/0608158] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M.R. Buckley and M.J. Ramsey-Musolf, Diagnosing Spin at the LHC via Vector Boson Fusion, JHEP 09 (2011) 094 [arXiv:1008.5151] [INSPIRE].

    Article  ADS  Google Scholar 

  8. H. Murayama and V. Rentala, Randall-Sundrum graviton spin determination using azimuthal angular dependence, Phys. Rev. D 85 (2012) 095005 [arXiv:0904.4561] [INSPIRE].

    ADS  Google Scholar 

  9. C. Englert, M. Spannowsky and M. Takeuchi, Measuring Higgs CP and couplings with hadronic event shapes, JHEP 06 (2012) 108 [arXiv:1203.5788] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Choi, M. Muhlleitner and P. Zerwas, Theoretical Basis of Higgs-Spin Analysis in H → γγ and Zγ Decays, Phys. Lett. B 718 (2013) 1031 [arXiv:1209.5268] [INSPIRE].

    ADS  Google Scholar 

  11. J. Frank, M. Rauch and D. Zeppenfeld, Spin-2 Resonances in Vector-Boson-Fusion Processes at NLO QCD, arXiv:1211.3658 [INSPIRE].

  12. C. Englert, D. Goncalves-Netto, K. Mawatari and T. Plehn, Higgs Quantum Numbers in Weak Boson Fusion, JHEP 01 (2013) 148 [arXiv:1212.0843] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].

    Article  ADS  Google Scholar 

  14. N. Cabibbo, A. Maksymowicz, Angular Correlations in K e4 Decays and Determination of Low-Energy π-π Phase Shifts, Phys. Rev. 137 (1965) B438 [Erratum ibid. 168 (1968) 1926].

    Article  ADS  Google Scholar 

  15. J.R. Dell’Aquila and C.A. Nelson, P or CP determination by sequential decays: V 1 V 2 modes with decays into \( {{\overline{\ell}}_A}{\ell_B} \) and/or \( {{\overline{q}}_A}{q_B} \), Phys. Rev. D 33 (1986) 80 [INSPIRE].

    ADS  Google Scholar 

  16. J.R. Dell’Aquila and C.A. Nelson, Distinguishing a spin-0 technipion and an elementary Higgs boson: V 1 V 2 modes with decays into \( {{\overline{\ell}}_A}{\ell_B} \) and/or \( {{\overline{q}}_A}{q_B} \), Phys. Rev. D 33 (1986) 93 [INSPIRE].

    ADS  Google Scholar 

  17. C.A. Nelson, Correlation between decay planes in Higgs boson decays into W pair (into Z pair), Phys. Rev. D 37 (1988) 1220 [INSPIRE].

    ADS  Google Scholar 

  18. V. Gribov and L. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781] [INSPIRE].

    Google Scholar 

  19. L. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20 (1975) 94 [Yad. Fiz. 20 (1974) 181] [INSPIRE].

    Google Scholar 

  20. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    Article  ADS  Google Scholar 

  21. Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics (In Russian), Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [INSPIRE].

    ADS  Google Scholar 

  22. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Kawabata, A new version of the multidimensional integration and event generation package BASES/SPRING, Comput. Phys. Commun. 88 (1995) 309 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  25. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  26. J.R. Andersen, V. Del Duca and C.D. White, Higgs Boson Production in Association with Multiple Hard Jets, JHEP 02 (2009) 015 [arXiv:0808.3696] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayan Mukhopadhyay.

Additional information

ArXiv ePrint: 1302.0960

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagiwara, K., Mukhopadhyay, S. Azimuthal correlation among jets produced in association with a bottom or top quark pair at the LHC. J. High Energ. Phys. 2013, 19 (2013). https://doi.org/10.1007/JHEP05(2013)019

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)019

Keywords

Navigation