Skip to main content
Log in

A realistic model of neutrino masses with a large neutrinoless double beta decay rate

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The minimal Standard Model extension with the Weinberg operator does accommodate the observed neutrino masses and mixing, but predicts a neutrinoless double beta (0νββ) decay rate proportional to the effective electron neutrino mass, which can be then arbitrarily small within present experimental limits. However, in general 0νββ decay can have an independent origin and be near its present experimental bound; whereas neutrino masses are generated radiatively, contributing negligibly to 0νββ decay. We provide a realization of this scenario in a simple, well defined and testable model, with potential LHC effects and calculable neutrino masses, whose two-loop expression we derive exactly. We also discuss the connection of this model to others that have appeared in the literature, and remark on the significant differences that result from various choices of quantum number assignments and symmetry assumptions. In this type of models lepton flavor violating rates are also preferred to be relatively large, at the reach of foreseen experiments. Interestingly enough, in our model this stands for a large third mixing angle, \( {\text{si}}{{\text{n}}^{{2}}}{\theta_{{{13}}}}{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{ > }}0.00{8} \), when μeee is required to lie below its present experimental limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  2. M. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].

    Article  ADS  Google Scholar 

  3. R. Mohapatra et al., Theory of neutrinos: a white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].

    Article  ADS  Google Scholar 

  4. G. Altarelli and F. Feruglio, Neutrino masses and mixings: A theoretical perspective, Phys. Rept. 320 (1999) 295 [INSPIRE].

    Article  ADS  Google Scholar 

  5. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].

    ADS  Google Scholar 

  6. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  7. S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    Article  ADS  Google Scholar 

  8. W. Furry, On transition probabilities in double beta-disintegration, Phys. Rev. 56 (1939) 1184 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  9. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Google Scholar 

  10. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G. Branco, R.G. Felipe and F. Joaquim, Leptonic CP-violation, arXiv:1111.5332 [INSPIRE].

  12. J. Vergados, The neutrinoless double beta decay from a modern perspective, Phys. Rept. 361 (2002) 1 [hep-ph/0209347] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Schechter and J. Valle, Neutrinoless double beta decay in SU(2) × U(1) theories, Phys. Rev. D 25 (1982) 2951 [INSPIRE].

    ADS  Google Scholar 

  14. A. Barabash, Double beta decay experiments, Phys. Part. Nucl. 42 (2011) 613 [arXiv:1107.5663] [INSPIRE].

    Article  Google Scholar 

  15. I. Avignone, Frank T., S.R. Elliott and J. Engel, Double beta decay, majorana neutrinos and neutrino mass, Rev. Mod. Phys. 80 (2008) 481 [arXiv:0708.1033] [INSPIRE].

    Article  ADS  Google Scholar 

  16. F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, Effective lagrangian approach to neutrinoless double beta decay and neutrino masses, arXiv:1204.5986 [INSPIRE].

  17. K. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].

    Article  ADS  Google Scholar 

  18. K.-w. Choi, K.S. Jeong and W.Y. Song, Operator analysis of neutrinoless double beta decay, Phys. Rev. D 66 (2002) 093007 [hep-ph/0207180] [INSPIRE].

    ADS  Google Scholar 

  19. J. Engel and P. Vogel, Effective operators for double beta decay, Phys. Rev. C 69 (2004) 034304 [nucl-th/0311072] [INSPIRE].

    ADS  Google Scholar 

  20. A. de Gouvˆea and J. Jenkins, A survey of lepton number violation via effective operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].

    ADS  Google Scholar 

  21. C.-S. Chen, C. Geng and J. Ng, Unconventional neutrino mass generation, neutrinoless double beta decays and collider phenomenology, Phys. Rev. D 75 (2007) 053004 [hep-ph/0610118] [INSPIRE].

    ADS  Google Scholar 

  22. C.-S. Chen, C.-Q. Geng, J.N. Ng and J.M. Wu, Testing radiative neutrino mass generation at the LHC, JHEP 08 (2007) 022 [arXiv:0706.1964] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Mohapatra and P. Pal, Massive neutrinos in physics and astrophysics, Lectures Notes in Physics voume 60, World Scientific, Singapore (1998).

  24. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Ibarra, E. Molinaro and S. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν -decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Mitra, G. Senjanović and F. Vissani, Neutrinoless double beta decay and heavy sterile neutrinos, Nucl. Phys. B 856 (2012) 26 [arXiv:1108.0004] [INSPIRE].

  27. M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703-703] [INSPIRE].

    ADS  Google Scholar 

  29. R. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].

    ADS  Google Scholar 

  30. G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].

    ADS  Google Scholar 

  31. M. Duerr, M. Lindner and A. Merle, On the quantitative impact of the Schechter-Valle theorem, JHEP 06 (2011) 091 [arXiv:1105.0901] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. K. Babu, Model of ’calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].

    ADS  Google Scholar 

  34. Y. Zeldovich, I.Y. Kobzarev and L. Okun, Cosmological consequences of the spontaneous breakdown of discrete symmetry, Zh. Eksp. Teor. Fiz. 67 (1974) 3 [INSPIRE].

    ADS  Google Scholar 

  35. A. Vilenkin, Cosmic strings and domain walls, Phys. Rept. 121 (1985) 263 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. R.E. Shrock and M. Suzuki, Invisible decays of Higgs bosons, Phys. Lett. B 110 (1982) 250 [INSPIRE].

    ADS  Google Scholar 

  37. S. Bertolini and A. Santamaria, The stability of the VEV hierarchy and Higgs invisibility in Majoron models, Phys. Lett. B 213 (1988) 487 [INSPIRE].

    ADS  Google Scholar 

  38. A. Aparici, K. Kim, A. Santamaria and J. Wudka, Right-handed neutrino magnetic moments, Phys. Rev. D 80 (2009) 013010 [arXiv:0904.3244] [INSPIRE].

    ADS  Google Scholar 

  39. Y. Chikashige, R.N. Mohapatra and R. Peccei, Are there real goldstone bosons associated with broken lepton number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].

    ADS  Google Scholar 

  40. K. Ghosh, B. Mukhopadhyaya and U. Sarkar, Signals of an invisibly decaying Higgs in a scalar dark matter scenario: a study for the Large Hadron Collider, Phys. Rev. D 84 (2011) 015017 [arXiv:1105.5837] [INSPIRE].

    ADS  Google Scholar 

  41. K. Choi and A. Santamaria, Majorons and supernova cooling, Phys. Rev. D 42 (1990) 293 [INSPIRE].

    ADS  Google Scholar 

  42. Y. Chikashige, R.N. Mohapatra and R. Peccei, Spontaneously broken lepton number and cosmological constraints on the neutrino mass spectrum, Phys. Rev. Lett. 45 (1980) 1926 [INSPIRE].

    Article  ADS  Google Scholar 

  43. K. Choi and A. Santamaria, 17-KeV neutrino in a singlet-triplet Majoron model, Phys. Lett. B 267 (1991) 504 [INSPIRE].

    ADS  Google Scholar 

  44. P.-H. Gu, E. Ma and U. Sarkar, Pseudo-Majoron as dark matter, Phys. Lett. B 690 (2010) 145 [arXiv:1004.1919] [INSPIRE].

    ADS  Google Scholar 

  45. L. Basso, Phenomenology of the minimal B-L extension of the standard model at the LHC, arXiv:1106.4462 [INSPIRE].

  46. W. Konetschny and W. Kummer, Nonconservation of total lepton number with scalar bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].

    ADS  Google Scholar 

  47. T. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].

    ADS  Google Scholar 

  48. J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  49. H. Pas, M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, A superformula for neutrinoless double beta decay. 2. The short range part, Phys. Lett. B 498 (2001) 35 [hep-ph/0008182] [INSPIRE].

    ADS  Google Scholar 

  50. M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, Prospects for the Zee-Babu Model at the CERN LHC and low energy experiments, Phys. Rev. D 77 (2008) 093013 [arXiv:0711.0483] [INSPIRE].

    ADS  Google Scholar 

  51. M. Raidal and A. Santamaria, Muon electron conversion in nuclei versus μeγ: an effective field theory point of view, Phys. Lett. B 421 (1998) 250 [hep-ph/9710389] [INSPIRE].

    ADS  Google Scholar 

  52. S.M. Bilenky, J. Hosek and S. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].

    ADS  Google Scholar 

  53. S.M. Bilenky and S. Petcov, Massive neutrinos and neutrino oscillations, Rev. Mod. Phys. 59 (1987) 671 [Erratum ibid. 61 (1989) 169] [INSPIRE].

    Article  ADS  Google Scholar 

  54. T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum to ‘global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].

    Article  ADS  Google Scholar 

  55. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  56. Double Chooz collaboration, First results from the Double Chooz experiment, presented at LowNu2011, November 9–12, Seoul, Korea (2011), http://www.dchooz.org/DocDB/cgi-bin/public/ShowDocument?docid=3393.

  57. G. Gelmini and M. Roncadelli, Left-handed neutrino mass scale and spontaneously broken lepton number, Phys. Lett. B 99 (1981) 411 [INSPIRE].

    ADS  Google Scholar 

  58. E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716 [hep-ph/9802445] [INSPIRE].

    Article  ADS  Google Scholar 

  59. J. Gunion, J. Grifols, A. Mendez, B. Kayser and F.I. Olness, Higgs bosons in left-right symmetric models, Phys. Rev. D 40 (1989) 1546 [INSPIRE].

    ADS  Google Scholar 

  60. K. Huitu, J. Maalampi, A. Pietila and M. Raidal, Doubly charged Higgs at LHC, Nucl. Phys. B 487 (1997) 27 [hep-ph/9606311] [INSPIRE].

    Article  ADS  Google Scholar 

  61. J. Gunion, C. Loomis and K. Pitts, Searching for doubly charged Higgs bosons at future colliders, in the proceedings of the DPF/DPB summer study on new directions for high-energy physics (Snowmass96), June 25–July 12, Snowmass, Colorado U.S.A. (1996), eConf C 960625 (1996) LTH096 [hep-ph/9610237] [INSPIRE].

  62. A. Akeroyd and M. Aoki, Single and pair production of doubly charged Higgs bosons at hadron colliders, Phys. Rev. D 72 (2005) 035011 [hep-ph/0506176] [INSPIRE].

    ADS  Google Scholar 

  63. G. Azuelos, K. Benslama and J. Ferland, Prospects for the search for a doubly-charged Higgs in the left-right symmetric model with ATLAS, J. Phys. G 32 (2006) 73 [hep-ph/0503096] [INSPIRE].

    ADS  Google Scholar 

  64. F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].

    Article  ADS  Google Scholar 

  65. A. Akeroyd, C.-W. Chiang and N. Gaur, Leptonic signatures of doubly charged Higgs boson production at the LHC, JHEP 11 (2010) 005 [arXiv:1009.2780] [INSPIRE].

    Article  ADS  Google Scholar 

  66. B. Dion, T. Gregoire, D. London, L. Marleau and H. Nadeau, Bilepton production at hadron colliders, Phys. Rev. D 59 (1999) 075006 [hep-ph/9810534] [INSPIRE].

    ADS  Google Scholar 

  67. F. Cuypers and S. Davidson, Bileptons: present limits and future prospects, Eur. Phys. J. C 2 (1998) 503 [hep-ph/9609487] [INSPIRE].

    Article  ADS  Google Scholar 

  68. F. del Aguila, J. Aguilar-Saavedra and J. de Blas, Trilepton signals: the golden channel for seesaw searches at LHC, Acta Phys. Polon. B 40 (2009) 2901 [arXiv:0910.2720] [INSPIRE].

    ADS  Google Scholar 

  69. F. del Aguila, J.A. Aguilar-Saavedra and J. de Blas, New neutrino interactions at large colliders, PoS(ICHEP 2010)296 [arXiv:1012.1327] [INSPIRE].

  70. P. Nath et al., The hunt for new physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [INSPIRE].

    Article  Google Scholar 

  71. CMS collaboration, Inclusive search for doubly charged Higgs in leptonic final states at \( \sqrt {s} = 7 \) TeV, PAS-HIG-11-007 (2011).

  72. DELPHI collaboration, J. Abdallah et al., Search for doubly charged Higgs bosons at LEP-2, Phys. Lett. B 552 (2003) 127 [hep-ex/0303026] [INSPIRE].

    ADS  Google Scholar 

  73. OPAL collaboration, G. Abbiendi et al., Search for doubly charged Higgs bosons with the OPAL detector at LEP, Phys. Lett. B 526 (2002) 221 [hep-ex/0111059] [INSPIRE].

    ADS  Google Scholar 

  74. L3 collaboration, P. Achard et al., Search for doubly charged Higgs bosons at LEP, Phys. Lett. B 576 (2003) 18 [hep-ex/0309076] [INSPIRE].

    ADS  Google Scholar 

  75. OPAL collaboration, G. Abbiendi et al., Search for the single production of doubly charged Higgs bosons and constraints on their couplings from Bhabha scattering, Phys. Lett. B 577 (2003) 93 [hep-ex/0308052] [INSPIRE].

    ADS  Google Scholar 

  76. D0 collaboration, V. Abazov et al., Search for doubly-charged Higgs boson pair production in the decay to μ + μ + μ μ in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 93 (2004) 141801 [hep-ex/0404015] [INSPIRE].

    Article  ADS  Google Scholar 

  77. CDF collaboration, D. Acosta et al., Search for doubly-charged Higgs bosons decaying to dileptons in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 93 (2004) 221802 [hep-ex/0406073] [INSPIRE].

    Article  ADS  Google Scholar 

  78. CDF collaboration, D. Acosta et al., Search for long-lived doubly-charged Higgs bosons in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 95 (2005) 071801 [hep-ex/0503004] [INSPIRE].

    Article  ADS  Google Scholar 

  79. A. Melfo, M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, Type II seesaw at LHC: the roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].

    ADS  Google Scholar 

  80. V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-right symmetry: from LHC to neutrinoless double beta decay, Phys. Rev. Lett. 106 (2011) 151801 [arXiv:1011.3522] [INSPIRE].

    Article  ADS  Google Scholar 

  81. P.H. Frampton, S.L. Glashow and D. Marfatia, Zeroes of the neutrino mass matrix, Phys. Lett. B 536 (2002) 79 [hep-ph/0201008] [INSPIRE].

    ADS  Google Scholar 

  82. Z.-z. Xing, Texture zeros and Majorana phases of the neutrino mass matrix, Phys. Lett. B 530 (2002) 159 [hep-ph/0201151] [INSPIRE].

    ADS  Google Scholar 

  83. H. Fritzsch, Z.-z. Xing and S. Zhou, Two-zero textures of the Majorana neutrino mass matrix and current experimental tests, JHEP 09 (2011) 083 [arXiv:1108.4534] [INSPIRE].

    Article  ADS  Google Scholar 

  84. B. Brahmachari and E. Ma, Neutrinoless double beta decay with negligible neutrino mass, Phys. Lett. B 536 (2002) 259 [hep-ph/0202262] [INSPIRE].

    ADS  Google Scholar 

  85. ATLAS collaboration, Combined standard model higgs boson searches with up to 2.3 fb −1 of pp collisions at \( \sqrt {s} = 7 \) TeV at the LHC, ATLAS-CONF-2011-157 (2011).

  86. CMS collaboration, Combined standard model Higgs boson searches with up to 2.3 inverse femtobarns of pp collision data at \( \sqrt {s} = 7 \) TeV at the LHC, PAS-HIG-11-023 (2011).

  87. F. del Aguila and J. de Blas, Electroweak constraints on new physics, arXiv:1105.6103 [INSPIRE].

  88. F. del Aguila, J. Aguilar-Saavedra, J. de Blas and M. P´erez-Victoria, Electroweak constraints on see-saw messengers and their implications for LHC, arXiv:0806.1023 [INSPIRE].

  89. M. Einhorn, D. Jones and M. Veltman, Heavy particles and the ρ parameter in the standard model, Nucl. Phys. B 191 (1981) 146 [INSPIRE].

    Article  ADS  Google Scholar 

  90. M. Golden, An upper limit on the masses of the charged Higgs bosons in the Gelmini-Roncadelli model, Phys. Lett. B 169 (1986) 248 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arcadi Santamaria.

Additional information

ArXiv ePrint: 1111.6960

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Aguila, F., Aparici, A., Bhattacharya, S. et al. A realistic model of neutrino masses with a large neutrinoless double beta decay rate. J. High Energ. Phys. 2012, 133 (2012). https://doi.org/10.1007/JHEP05(2012)133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)133

Keywords

Navigation