Skip to main content
Log in

Incompressible fluids of the de Sitter horizon and beyond

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

There are (at least) two surfaces of particular interest in eternal de Sitter space. One is the timelike hypersurface constituting the lab wall of a static patch observer and the other is the future boundary of global de Sitter space. We study both linear and non-linear deformations of four-dimensional de Sitter space which obey the Einstein equation. Our deformations leave the induced conformal metric and trace of the extrinsic curvature unchanged for a fixed hypersurface. This hypersurface is either timelike within the static patch or spacelike in the future diamond. We require the deformations to be regular at the future horizon of the static patch observer. For linearized perturbations in the future diamond, this corresponds to imposing incoming flux solely from the future horizon of a single static patch observer. When the slices are arbitrarily close to the cosmological horizon, the finite deformations are characterized by solutions to the incompressible Navier- Stokes equation for both spacelike and timelike hypersurfaces. We then study, at the level of linearized gravity, the change in the discrete dispersion relation as we push the timelike hypersurface toward the worldline of the static patch. Finally, we study the spectrum of linearized solutions as the spacelike slices are pushed to future infinity and relate our calculations to analogous ones in the context of massless topological black holes in AdS4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].

    Article  ADS  Google Scholar 

  2. Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998)1009 [astro-ph/9805201] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D 15 (1977) 2738.

    MathSciNet  ADS  Google Scholar 

  4. N. Goheer, M. Kleban and L. Susskind, The trouble with de Sitter space, JHEP 07 (2003)056 [ hep-th/0212209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. T. Banks, Some thoughts on the quantum theory of de Sitter space, astro-ph/0305037 [INSPIRE].

  6. M.K. Parikh and E.P. Verlinde, de Sitter holography with a finite number of states, JHEP 01(2005) 054 [hep-th/0410227] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. T. Banks, B. Fiol and A. Morisse, Towards a quantum theory of de Sitter space, JHEP 12(2006) 004 [hep-th/0609062] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Banks, W. Fischler and S. Paban, Recurrent nightmares? Measurement theory in de Sitter space, JHEP 12 (2002) 062 [hep-th/0210160] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. L. Susskind, Addendum to fast scramblers, arXiv:1101.6048 [INSPIRE].

  10. M.K. Parikh and J.P. van der Schaar, Not one bit of de Sitter information, JHEP 09 (2008)041 [arXiv:0804.0231] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Castro, N. Lashkari and A. Maloney, A de Sitter Farey tail, Phys. Rev. D 83 (2011)124027 [arXiv:1103.4620] [INSPIRE].

    ADS  Google Scholar 

  12. M. Alishahiha, A. Karch, E. Silverstein and D. Tong, The dS/dS correspondence, AIP Conf. Proc. 743 (2005) 393 [hep-th/0407125] [INSPIRE].

    Article  ADS  Google Scholar 

  13. E. Silverstein, AdS and dS entropy from string junctions: or, the Function of junction conjunctions, in From fields to strings, volume 3, M. Shifman ed., World Scientific, Singapore (2005), hep-th/0308175 [INSPIRE].

  14. D. Anninos, G.S. Ng and A. Strominger, Future boundary conditions in de Sitter space, JHEP 02 (2012) 032 [arXiv:1106.1175] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Anninos, S.A. Hartnoll and D.M. Hofman, Static patch solipsism: conformal symmetry of the de Sitter worldline, Class. Quant. Grav. 29 (2012) 075002 [arXiv:1109.4942] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. T. Damour, Quelques propri´et´es m´ecaniques, ´electromagn´etiques, thermodynamiques et quantiques des trous noirs”, Ph.D. thesis, Universit´e, Pierre et Marie Curie, Paris VI, Paris, France (1979).

  17. T. Damour, Surface effects in black hole physics, in the proceedings of the 2nd Marcel Grossmann meeting on general relativity, R. Ruffini ed., North-Holland, The Netherlands (1982).

  18. R. Price and K. Thorne, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev. D 33 (1986) 915 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. J. Khoury and M. Parikh, Mach’s holographic principle, Phys. Rev. D 80 (2009) 084004[hep-th/0612117] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes to Einstein, arXiv:1101.2451 [INSPIRE].

  22. I. Bredberg and A. Strominger, Black holes as incompressible fluids on the sphere, JHEP 05(2012) 043 [arXiv:1106.3084] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Policastro, D. Son and A. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960.

    MathSciNet  ADS  Google Scholar 

  27. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. C. Hull, Timelike T duality, de Sitter space, large-N gauge theories and topological field theory, JHEP 07 (1998) 021 [hep-th/9806146] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].

  30. J.M. Maldacena, Non-gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    Article  ADS  Google Scholar 

  31. D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].

  32. D. Anninos, G.S. Ng and A. Strominger, Asymptotic symmetries and charges in de Sitter space, Class. Quant. Grav. 28 (2011) 175019 [arXiv:1009.4730] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. P. McFadden and K. Skenderis, Holography for cosmology, Phys. Rev. D 81 (2010) 021301[arXiv:0907.5542] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, arXiv:1108.5735 [INSPIRE].

  35. R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev. D 65 (2002) 104039 [hep-th/0112218] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. D. Anninos, S. de Buyl and S. Detournay, Holography for a de Sitter-Esque geometry, JHEP 05 (2011) 003 [arXiv:1102.3178] [INSPIRE].

    Article  ADS  Google Scholar 

  37. G. Compère, P. McFadden, K. Skenderis and M. Taylor, The holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [INSPIRE].

    Article  ADS  Google Scholar 

  38. H. Kodama, A. Ishibashi and O. Seto, Brane world cosmology: gauge invariant formalism for perturbation, Phys. Rev. D 62 (2000) 064022 [ hep-th/0004160] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. H. Kodama and A. Ishibashi, A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys. 110 (2003) 701[hep-th/0305147] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. M. Abramowitz and I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publication, New York U.S.A. (1972).

    MATH  Google Scholar 

  41. P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. Lopez-Ortega, Quasinormal modes of D-dimensional de Sitter spacetime, Gen. Rel. Grav.38 (2006) 1565 [gr-qc/0605027] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

  44. D. Forster, D.R. Nelson and M.J. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16 (1977) 732 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. I. Booth and R.B. Mann, Cosmological pair production of charged and rotating black holes, Nucl. Phys. B 539 (1999) 267 [gr-qc/9806056] [INSPIRE].

    Article  ADS  Google Scholar 

  46. D. Anninos and T. Hartman, Holography at an extremal de Sitter horizon, JHEP 03 (2010)096 [arXiv:0910.4587] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D. Anninos and T. Anous, A de Sitter hoedown, JHEP 08 (2010) 131 [arXiv:1002.1717] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. D. Birmingham, Topological black holes in anti-de Sitter space, Class. Quant. Grav. 16 (1999) 1197 [hep-th/9808032] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. D. Birmingham and S. Mokhtari, Exact gravitational quasinormal frequencies of topological black holes, Phys. Rev. D 74 (2006) 084026 [hep-th/0609028] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  50. R. Emparan, AdS/CFT duals of topological black holes and the entropy of zero energy states, JHEP 06 (1999) 036 [hep-th/9906040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. G. Horowitz, A. Lawrence and E. Silverstein, Insightful D-branes, JHEP 07 (2009) 057[arXiv:0904.3922] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Erdelyi, Higher transcendental functions. Volume 1, McGraw-Hill, New York U.S.A. (1955).

    Google Scholar 

  53. Z.X. Wang and D.R. Guo, Special functions, World Scientific, Singapore (1989).

    Book  Google Scholar 

  54. C. Eling, I. Fouxon and Y. Oz, The Incompressible Navier-Stokes Equations From Membrane Dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionysios Anninos.

Additional information

ArXiv ePrint: 1110.3792

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anninos, D., Anous, T., Bredberg, I. et al. Incompressible fluids of the de Sitter horizon and beyond. J. High Energ. Phys. 2012, 107 (2012). https://doi.org/10.1007/JHEP05(2012)107

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)107

Keywords

Navigation