Skip to main content
Log in

Holographic entanglement entropy: near horizon geometry and disconnected regions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the finite term of the holographic entanglement entropy for the charged black hole in AdS d+2 and other examples of black holes when the spatial region in the boundary theory is given by one or two parallel strips. For one large strip it scales like the width of the strip. The divergent term of its expansion as the turning point of the minimal surface approaches the horizon is determined by the near horizon geometry. Examples involving a Lifshitz scaling are also considered. For two equal strips in the boundary we study the transition of the mutual information given by the holographic prescription. In the case of the charged black hole, when the width of the strips becomes large this transition provides a characteristic finite distance depending on the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [SPIRES].

  5. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [SPIRES].

    MathSciNet  Google Scholar 

  6. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [SPIRES].

    MathSciNet  Google Scholar 

  11. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. J.L.F. Barbon and C.A. Fuertes, A note on the extensivity of the holographic entanglement entropy, JHEP 05 (2008) 053 [arXiv:0801.2153] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. J.L.F. Barbon and C.A. Fuertes, Holographic entanglement entropy probes (non)locality, JHEP 04 (2008) 096 [arXiv:0803.1928] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Caraglio and F. Gliozzi, Entanglement entropy and twist fields, JHEP 11 (2008) 076 [arXiv:0808.4094] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Furukawa, V. Pasquier and J. Shiraishi, Mutual information and compactification radius in a c = 1 critical phase in one dimension, arXiv:0809.5113 [SPIRES].

  16. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. (2009) P11001 [arXiv:0905.2069] [SPIRES].

  17. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. (2011) P01021 [arXiv:1011.5482] [SPIRES].

  18. V. Alba, L. Tagliacozzo and P. Calabrese, Entanglement entropy of two disjoint blocks in critical Ising models, arXiv:0910.0706 [SPIRES].

  19. M. Fagotti and P. Calabrese, Entanglement entropy of two disjoint blocks in XY chains, J. Stat. Mech. (2010) P04016 [arXiv:1003.1110] [SPIRES].

  20. H. Casini, C.D. Fosco and M. Huerta, Entanglement and α entropies for a massive Dirac field in two dimensions, J. Stat. Mech. (2005) P07007 [cond-mat/0505563] [SPIRES].

  21. H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP 03 (2009) 048 [arXiv:0812.1773] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Casini and M. Huerta, Reduced density matrix and internal dynamics for multicomponent regions, Class. Quant. Grav. 26 (2009) 185005 [arXiv:0903.5284] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy, JHEP 02 (2007) 042 [hep-th/0608213] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. V.E. Hubeny and M. Rangamani, Holographic entanglement entropy for disconnected regions, JHEP 03 (2008) 006 [arXiv:0711.4118] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [SPIRES].

    ADS  Google Scholar 

  27. C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Emergent quantum near-criticality from baryonic black branes, JHEP 03 (2010) 093 [arXiv:0911.0400] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [SPIRES].

    ADS  Google Scholar 

  29. S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  30. K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. T. Azeyanagi, T. Nishioka and T. Takayanagi, Near extremal black hole entropy as entanglement entropy via AdS 2 /CFT 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Tonni.

Additional information

ArXiv ePrint: 1011.0166

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonni, E. Holographic entanglement entropy: near horizon geometry and disconnected regions. J. High Energ. Phys. 2011, 4 (2011). https://doi.org/10.1007/JHEP05(2011)004

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)004

Keywords

Navigation