Skip to main content
Log in

Analytical computation of critical exponents in several holographic superconductors

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

It is very interesting that all holographic superconductors, such as s-wave, p-wave and d-wave holographic superconductors, show the universal mean-field critical exponent 1/2 at the critical temperature, just like Gindzburg-Landau (G-L) theory for second order phase transitions. Now it is believed that the universal critical exponents appear because the dual gravity theory is classic in the large N limit. However, even in the large N limit there is an exception called “non-mean-field theory”: an extension of the s-wave model with a cubic term of the charged scalar field shows a different critical exponent 1. In this paper, we try to use analytical methods to obtain the critical exponents for these models to see how the properties of the gravity action decides the appearance of the mean-field behaviors. It will be seen that just like the G-L theory, it is the fundamental symmetries rather than the detailed parameters of the bulk theory that lead to the universal properties of the holographic superconducting phase transition. The feasibility of the called “non-mean-field theory” is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  6. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  7. S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. M.M. Roberts and S.A. Hartnoll, Pseudogap and time reversal breaking in a holographic superconductor, JHEP 08 (2008) 035 [arXiv:0805.3898] [SPIRES].

    Article  Google Scholar 

  10. J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards A Holographic Model of D-Wave Superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [SPIRES].

    ADS  Google Scholar 

  11. F. Benini, C.P. Herzog and A. Yarom, Holographic Fermi arcs and a d-wave gap, arXiv:1006.0731 [SPIRES].

  12. F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].

    ADS  Google Scholar 

  14. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. K. Peeters, J. Powell and M. Zamaklar, Exploring colourful holographic superconductors, JHEP 09 (2009) 101 [arXiv:0907.1508] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Siopsis and J. Therrien, Analytic calculation of properties of holographic superconductors, JHEP 05 (2010) 013 [arXiv:1003.4275] [SPIRES].

    Article  ADS  Google Scholar 

  21. K. Maeda and T. Okamura, Characteristic length of an AdS/CFT superconductor, Phys. Rev. D 78 (2008) 106006 [arXiv:0809.3079] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  23. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [SPIRES].

    ADS  Google Scholar 

  25. G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [SPIRES].

  26. S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [SPIRES].

    Google Scholar 

  27. P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. S. Franco, A.M. Garcia-Garcia and D. Rodriguez-Gomez, A holographic approach to phase transitions, Phys. Rev. D 81 (2010) 041901 [arXiv:0911.1354] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. S. Franco, A. Garcia-Garcia and D. Rodriguez-Gomez, A general class of holographic superconductors, JHEP 04 (2010) 092 [arXiv:0906.1214] [SPIRES].

    Article  ADS  Google Scholar 

  30. C.P. Herzog, An Analytic Holographic Superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [SPIRES].

    ADS  Google Scholar 

  31. D. Arean, P. Basu and C. Krishnan, The Many Phases of Holographic Superfluids, JHEP 10 (2010) 006 [arXiv:1006.5165] [SPIRES].

    Article  ADS  Google Scholar 

  32. K. Maeda, M. Natsuume and T. Okamura, Universality class of holographic superconductors, Phys. Rev. D 79 (2009) 126004 [arXiv:0904.1914] [SPIRES].

    ADS  Google Scholar 

  33. M. Natsuume and T. Okamura, Dynamic universality class of large-N gauge theories, Phys. Rev. D 83 (2011) 046008 [arXiv:1012.0575] [SPIRES].

    ADS  Google Scholar 

  34. T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm, arXiv:1010.4036 [SPIRES].

  35. I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, arXiv:1010.1264 [SPIRES].

  36. D. Nickel and D.T. Son, Deconstructing holographic liquids, arXiv:1009.3094 [SPIRES].

  37. P. Hartwan, Ordinary Differential Equations, second edition, SIAM, Philadelphia U.S.A. (2002).

    Book  Google Scholar 

  38. Huimin Shao, Mathematical Physics Method, Science Press, Beijing China (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Bi Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, HB., Gao, X., Jiang, Y. et al. Analytical computation of critical exponents in several holographic superconductors. J. High Energ. Phys. 2011, 2 (2011). https://doi.org/10.1007/JHEP05(2011)002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)002

Keywords

Navigation